

SCHALLSCHUTZTECHNISCHE UNTERSUCHUNG

Nachweis des Schallimmissionsschutzes gemäß TA-Lärm

Bildnachweis: Bildnachweis: WAHP

für das Bauvorhaben

Gelenkbau Neue Medizinische Klinik Tübingen

im Auftrag von: Vermögen und Bau Baden-Württemberg, Amt Tübingen

Berichtsnr.: E22352-SIS-TAL-01

Stand: 29.04.2025


EGS-plan Ingenieurgesellschaft für Energie-, Gebäude- und Solartechnik mbH Gropiusplatz 10 . D-70563 Stuttgart Tel. +49 711 99 007 - 5 . Fax +49 711 99 007 - 99 info@egs-plan.de . www.egs-plan.de

IBAN-Nr. DE48 2505 0000 0002 0740 60 . BIC: NOLADE 2HXXX Ust.-IdNr. DE218431901 . Registergericht Stuttgart HRB 22434

Geschäftsführung: Dipl.-Ing. Jörg Baumgärtner Dipl.-Ing. (FH) Joachim Böwe Dr.-Ing. Boris Mahler

Generalbevollmächtigter: Univ. Prof. Dr.-Ing. M. Norbert Fisch 250429_SIS_NMK_1.BA_E22352.docx

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Auftraggeber / Bauherr Vermögen und Bau Baden-Württemberg

Amt Tübingen

Schnarrenbergstraße 1

72076 Tübingen

Architekt White Arkitekter

Magasinsgatan 10, Box 2502

403 17 Göteborg

HPP Architekten GmbH

Lindenspürstraße 32

70176 Stuttgart

Auftragnehmer EGS-Plan Ingenieurgesellschaft für

Energie-, Gebäude- und Solartechnik mbH

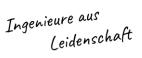
Gropiusplatz 10 70563 Stuttgart

Tel. +49 711 99 007 - 5

Fax +49 711 99 007 - 99

www.egs-plan.de

info@egs-plan.de

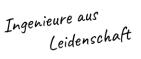

Bearbeitung:

Isabel Fischer-Kiedaisch M.Sc.

Daniel Waibel B.Eng.

Berichtsnr.: E22352-SIS-TAL-01 Projekt-Name:

NMK Tübingen – Gelenkbau (1.BA)



Inhaltsverzeichnis

1	Situ	ation und Aufgabenstellung	5
2	Beu	rteilungsgrundlagen, Normen, Richtlinien	6
3	Örtli	che Situation und bauplanrechtliche Gegebenheiten	8
4	Sch	allquellen	12
	4.1	NMK-Gelenkbau 1.BA	12
	4.1.1	Haustechnische Anlagen	12
	4.1.2	Wirtschaftshof	15
	4.2	CRONA Kliniken	24
	4.2.1	Haustechnische Anlagen	25
	4.2.2	Anlieferung CRONA	25
5	Beu	rteilungsgrundlagen	34
	5.1	Immissionsrichtwerte nach TA-Lärm (außerhalb von Gebäuden)	34
	5.2	Immissionsrichtwerte nach TA-Lärm (innerhalb von Gebäuden)	34
	5.3	Maßgeblicher Immissionsort	34
	5.3.1	Immissionsorte Gelenkbau (NMK)	35
	5.3.2	Immissionsorte CRONA	35
	5.3.3	Immissionsorte Bettenbau	36
	5.4	Zuschläge	36
	5.5	Allgemeine Vorgehensweise	36
6	Erge	ebnisse der Berechnungen	37
	6.1	Ergebnisse Tagzeitraum	39
	6.2	Ergebnisse Nachtzeitraum	39
7	Zusa	ammenfassung	40

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Anlagen

- I. Raster- und Gebäudelärmkarte, CRONA; Bewertung nach TA-Lärm, Tag
- II. Raster- und Gebäudelärmkarte, CRONA, Bewertung nach TA-Lärm, Nacht
- III. Raster- und Gebäudelärmkarte, NMK; Bewertung nach TA-Lärm, Tag
- IV. Raster- und Gebäudelärmkarte, Bettenbau; Bewertung nach TA-Lärm, Tag
- V. Beurteilungspegel Belastung CRONA
- VI. Beurteilungspegel Belastung NMK
- VII. Beurteilungspegel Bettenbau
- VIII. Rechenlaufinformationen Belastung CRONA
- IX. Rechenlaufinformationen Belastung NMK
- X. Rechenlaufinformationen Bettenbau
- XI. Schallquellen Belastung CRONA
- XII. Schallquellen Belastung NMK
- XIII. Schallquellen Bettenbau

Berichtsnr.: Projekt-Name:

E22352-SIS-TAL-01

NMK Tübingen - Gelenkbau (1.BA)

1 Situation und Aufgabenstellung

Das Universitätsklinikum Tübingen (UKT) und das Land Baden-Württemberg, vertreten durch Vermögen und Bau Baden-Württemberg/Amt Tübingen, planen den ersten Bauabschnitt ("Gelenkbau") einer Neuen Medizinischen Klinik (NMK). Als Gebäude des Landes kommt dem Neubau in besonderer Art und Weise eine Vorbildfunktion zu.

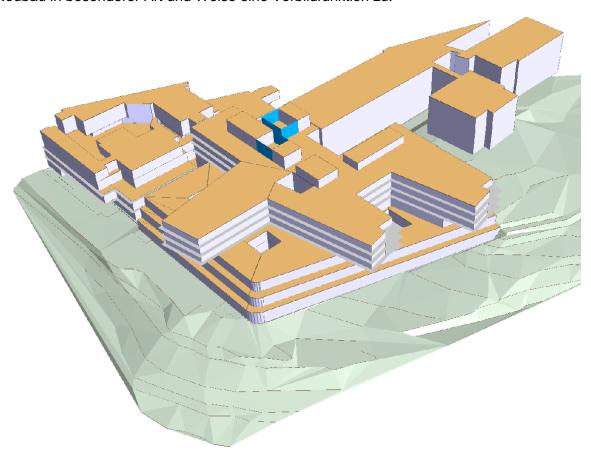


Abbildung 1: 3D-Dartsellung des Berechnungsmodells.

Innerhalb der vorliegenden schalltechnischen Untersuchung sind die von den Lärmquellen des Gebäudes verursachten Geräuschimmissionen zu ermitteln und die Einwirkung auf die Allgemeinheit und der Nachbarschaft nach TA Lärm [1] zu beurteilen.

Dabei sind folgende Lärmquellen zu beachten:

- Lärmbelastung durch den Andienungsverkehr (Lieferverkehr)
- Lärmbelastung durch die Anliefervorgänge im Wirtschaftshof
- Lärmbelastung durch haustechnische Anlagen
- Lärmbelastung durch Müllentsorgung

Ergänzend ist zu prüfen, inwieweit das Gebäude Lärmemissionen durch die angrenzende CRONA-Klinik ausgesetzt ist und ob die Nutzung mit der Lärmsituation des geplanten Vorhabens vereinbar ist (Über-Kreuz-Betrachtung).

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

2 Beurteilungsgrundlagen, Normen, Richtlinien

- [1] TA-Lärm Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm) 26.08.1998, zuletzt geändert am 01.06.2017.
- [2] DIN EN ISO 12354-4:2017-11; Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften Teil 4: Schallübertragung von Räumen ins Freie.
- [3] Technischer Bericht zur Untersuchung der Geräuschemissionen durch Lastkraftwagen auf Betriebsgeländen von Frachtzentren, Auslieferungslagern, Spedition und Verbrauchermärkten sowie weiterer typischer Geräusche insbesondere von Verbrauchermärkten, Bd. Lärmschutz in Hessen, Wiesbaden: Hessisches Landesamt für Umwelt und Geologie, 2005.
- [4] U. u. G. Hessisches Landesamt für Naturschutz, Hrsg., *Technischer Bericht: LKW-Studie: Untersuchung von Geräuschemissionen durch logistische Vorgange von Lastkraftwagen,* Wiesbaden: Umwelt und Geologie Lärmschutz in Hessen, Heft 3, 2024.
- [5] Technischer Bericht zur Untersuchung der Lkw- und Ladegeräusche auf Betriebsgeländen von Frachtzentren, Auslieferungslagern und Speditionen, Schriftenreihe der Hessischen Landesanstalt für Umwelt, Heft Nr. 192, 1995.
- [6] DIN 4109:1989-11 Schallschutz im Hochbau Anforderungen und Nachweise.

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

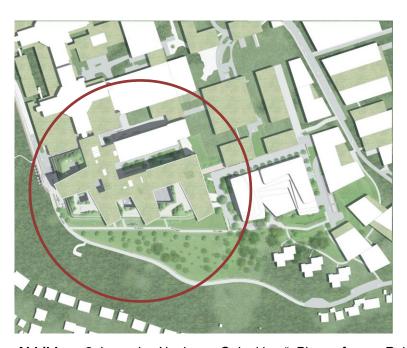
Für die Beurteilung standen neben den oben aufgeführten Unterlagen folgende Planunterlagen der Architekten zur Verfügung:

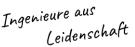
Bezeichnung	Maßstab	Bezeichnung	Datum
Grundrisse Ebene 01 bis 05	1:200	AA3P G+00 000- bis	12.12.2024
		AA3P G+05 000-	
Schnitt 1+2, A+B	1:200	AA3S GG 001-,	12.12.2024
		AA3S GG 002-,	
Dachaufsicht	1 : 200	AA3G GDA- 000-	12.12.2024
Lageplan	1 : 1000	DA2L GA-008-00	22.09.2023
3D-Modell		NMK_Tueb-ARC-WIP	15.10.2024

3 Örtliche Situation und bauplanrechtliche Gegebenheiten

Der Neubau "Gelenkbau" der Neuen Medizinischen Klinik (NMK) Tübingen befindet sich in einem Sondernutzungsgebiet. Die Schallimmissionen, die durch die Lärmquellen am geplanten Neubau entstehen, fallen in den Gültigkeitsbereich der TA-Lärm.

Sowohl die CRONA-Kliniken als auch der geplante Neubau (NMK) liegen in einem Gebiet, welches charakteristisch zunächst der TA-Lärm Nr. 6.1 Buchstabe g) Kurgebiete, Krankenhäuser und Pflegeanstalten, zugeordnet werden muss. Die einzuhaltenden Immissionsrichtwerte gegenüber fremden Anlagen liegen daher tagsüber bei 45 dB(A) und nachts bei 35 dB(A) (siehe Tabelle 1).




Abbildung 2: Lage des Neubaus "Gelenkbau"; Planverfasser: Rainer Schmidt Landschaftsarchitekten

Für Krankenhäuser, Kurgebiete und Pflegeanstalten stellt die TA-Lärm aufgrund der hohen Schutzbedürftigkeit der Nutzer sehr strenge Anforderungen. Diese stehen teilweise in Konflikt mit betrieblichen Vorgängen, die in direktem Zusammenhang mit der Krankenhausnutzung stehen (z.B. Anlieferung und Wirtschaftshof).

Vorangegangene Untersuchungen haben gezeigt, dass bereits aufgrund der Vorbelastung des Wirtschaftshofes der CRONA-Klinik diese Immissionsrichtwerte für Pflegeheime an der CRONA-Klinik selbst und am geplanten NMK nicht eingehalten werden können.

Berichtsnr.: Projekt-Name: E22352-SIS-TAL-01

NMK Tübingen – Gelenkbau (1.BA)

Aufgrund der bereits bestehenden Überschreitungen und der gleichzeitigen betrieblichen Abhängigkeit der Gebäude wurde von Seiten des Landratsamtes Tübingen eine Über-Kreuz-Betrachtung der Schallimmission von CRONA und NMK vorgeschlagen. Hierbei werden jeweils die Schallimmission der CRONA-Klinik auf die Neue Medizinische Klinik und die Schallimmission der Neuen Medizinischen Klinik auf die CRONA-Klinik getrennt betrachtet. Zusätzlich wird die Schallimmission aus den Lärmquellen der Neuen Medizinischen Klinik auf den Bettenbau berücksichtigt.

Zudem wurde in Abstimmung mit dem zuständigen Landratsamt nachfolgende Festlegung getroffen:

Von der Überschreitung betroffen sind keine Patientenzimmer, sondern ausschließlich Arbeitsräume, u. a. Büroräume und Dienstzimmer, welche nach der DIN 4109 "Schallschutz im Hochbau" Januar 2018 Nr. 3.16 trotzdem als "schutzbedürftige Räume" anzusehen sind. Andere Arbeitsräume wie zum Beispiel Labore fallen nicht unter diesen besonderen Schutzanspruch.

Da es sich bei Büroräumen um Arbeitsräume handelt und diese nicht der Erholung dienen, müssen diese Räume auch nicht dem gleichen Schutzanspruch unterstellt werden, wie dem eines Patientenzimmers, in denen die Ruhe die Genesung der Patienten fördern soll. Für diese Räume kann der Schutzanspruch eines Mischgebiets für ausreichend erachtet werden, weshalb im vorliegenden Fall für diese Büroräume die nach TA-Lärm Nr. 6.1 Buchstabe d) Mischgebiet vorgegebenen Immissionsrichtwerte von 60 dB(A) am Tag zugrunde zu legen sind, die Nachtwerte zwischen 22 Uhr und 6 Uhr müssen nicht betrachtet werden, da in diesem Zeitraum die Wirtschaftshöfe nicht betrieben werden.

Tabelle 1: Immissionsrichtwerte nach TA-Lärm

Raumnutzung	Immissionsrichtwert Tag L _{r,t} [dB(A)]	Immissionsrichtwert Nacht $L_{r,n}$ [dB(A)]
Bettenzimmer	45	35
Büro- und Diensträume	60	45

Nachfolgend sind die relevanten Nutzungen der einzelnen Geschosse systematisch in den Grundrissen gekennzeichnet. Bettenzimmer sind dabei blau gekennzeichnet, Büro-, Laborund ähnliche Räume in Rot.

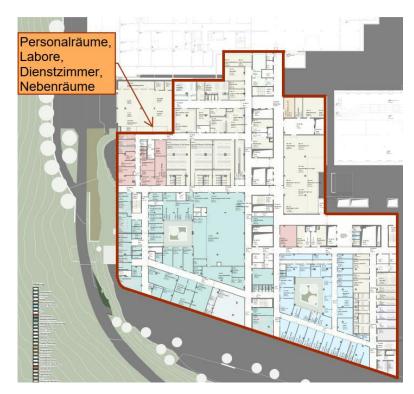


Abbildung 3: Grundriss E01

Abbildung 4: Grundriss 02

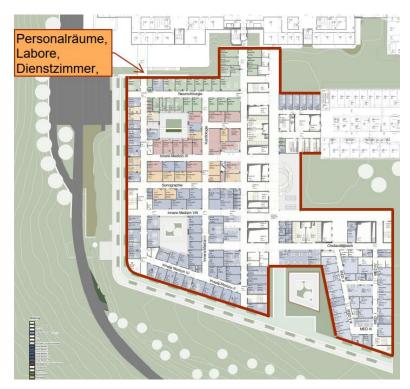


Abbildung 5: Grundriss 03

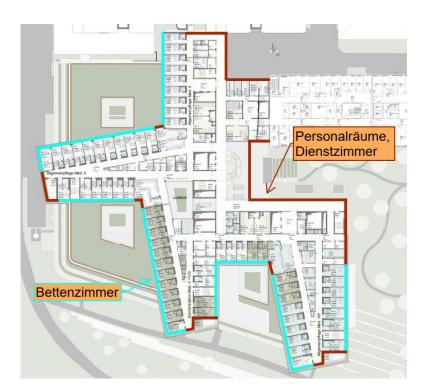


Abbildung 6: Grundriss 04-06

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

4 Schallquellen

Für die in Kapitel 3 erläuterte Vorgehensweis (Über-Kreuz-Betrachtung) müssen sowohl die Schallquellen des Neubaus NMK sowie der bestehenden CRONA-Kliniken abgebildet und deren Auswirkungen separat voneinander beurteilt werden. Im nachfolgenden Kapitel sind die relevanten Schallquellen der Gebäude aufgeführt.

4.1 NMK-Gelenkbau 1.BA

Im nachfolgenden Bild wird die Lage der berücksichtigten Schallquellen im Simulationsmodell dargestellt.

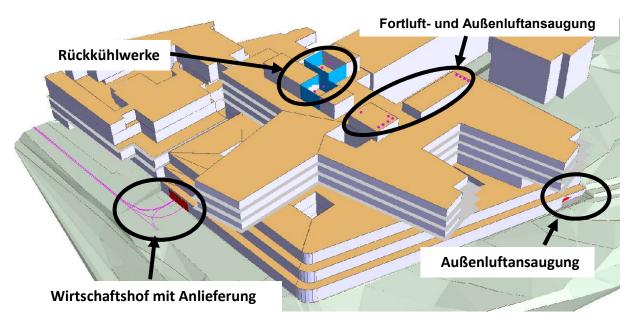


Abbildung 7: Lage der Schallemittenten – NMK Gelenkbau

4.1.1 Haustechnische Anlagen

Haustechnischen Anlagen sind als Emittenten in der Beurteilung zu berücksichtigen. Die haustechnischen Lärmemittenten werden entsprechend den Angaben der Haustechnikplanung angesetzt.

4.1.1.1 Zu- und Abluftelemente Fassade

Für die Außenluftansaugung auf der Südseite des Gebäudes wurde von der Haustechnik ein Gesamt-Schallleistungspegel der Öffnung mit L_W = 68 dB(A) angegeben. Die Anlage wird rund um die Uhr betrieben.

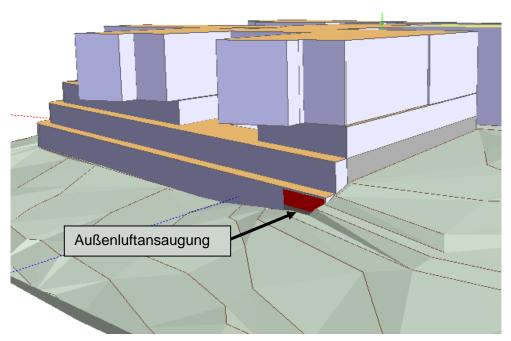


Abbildung 8: Lage der Außenluftansaugung

4.1.1.2 Zu- und Fortluftelemente Dach

Für die Fortluft - und Außenluftansaugung auf dem Dach des Gebäudes wurde von der Haustechnik je ein Gesamt-Schallleistungspegel mit L_W = 60 dB(A) angegeben. Die Anlage wird rund um die Uhr betrieben. Die Rückkühler

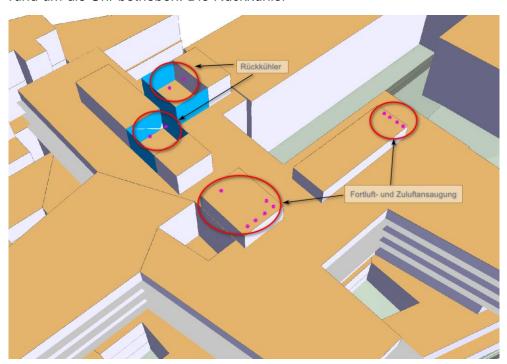


Abbildung 9: Lage der Fortluft, Außenluftansaugung und Rückkühler

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

4.1.1.3 Probebetrieb NEA

Für die Einhaltung der Richtwerte zum Schallimmissionsschutz von 45 dB(A) tagsüber, ist ein Schallleistungspegel von Lw \leq 85 dB(A) nötig. Dies ist ggf. durch geeignete schalldämmenden Maßnahmen umzusetzen. Die Betriebszeiten sind von 06:00 – 22:00 Uhr (Tagzeiten für erhöhte Empfindlichkeit) und mit einer Testlaufzeit von einer Stunde angesetzt.

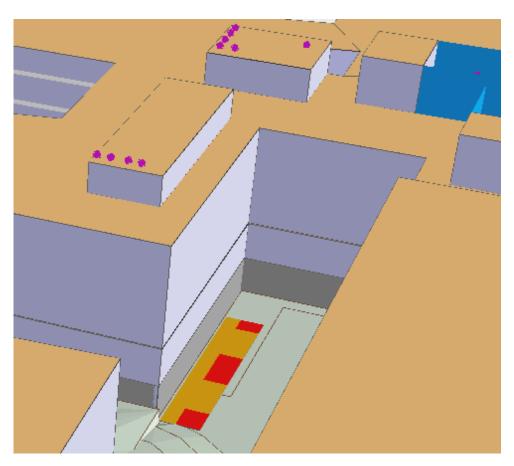


Abbildung 10: Verortung der NEA-Schächte

Es sind 3 Schachtöffnungen für die NEA's vorgesehen. Der Schallleistungspegel wurde anhand der vorhandenen Öffnungsflächen über flächenbezogene Schallleistungspegel L"w ermittelt.

4.1.1.4 Rückkühlwerke Dach

Die eingeplanten Rückkühler auf dem Dach (siehe Abbildung 9) sollen eingehaust werden. Von der Haustechnik wurde ein Gesamt-Schallleistungspegel mit $L_W = 75 \text{ dB(A)}$ angegeben. Die Anlage wird rund um die Uhr betrieben.

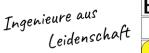
Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

4.1.2 Wirtschaftshof

Die Versorgung des Neubaus erfolgt über den Wirtschaftshof in Ebene E01. Er wird über die westlich der Klinik gelegene Straße "Ob der Grafenhalde" verkehrstechnisch angebunden. Die Einfahrt erfolgt über drei Tore und liegt auf Höhe der Außenwand.

Im Wirtschaftshof erfolgt die Be- und Entladung von LKWs u.a. mit Wäsche, Getränken, Laborutensilien und –Proben. Auch die Müllcontainer des Klinikums sind dort angeordnet, zudem gibt es Kurzzeit-Parkplätze für Handwerker und sonstige Dienstleister.

Betriebszeit: 06-22 Uhr


Der Wirtschaftshof liegt in Ebene E01 in der Nord-Ost-Ecke des Gebäudes. Es sind folgende, lärmintensive Nutzungen vorgesehen:

- Anlieferung mit LKW (bis zu 18t)
- Be- und Entladung mittels Hubwagen u. Gabelstapler
- Presscontainer f
 ür Papier
- Gitterboxen für Holz, Metall, Elektro, Mischmaterial
- Stellplätze für Dienstleister

Die Anlieferung des Wirtschaftshofs findet ausschließlich im Tagzeitraum zwischen 06:00 Uhr und 22:00 Uhr statt. Außerhalb des Tagzeitraums finden keine lärmintensiven Arbeiten im Hof statt und die Tore sind im Allgemeinen geschlossen.

Abbildung 11: Lage des Wirtschaftshofs in Ebene E01

Der resultierende Schallleistungspegel, der über die Fassade und Tore abgestrahlt wird, errechnet sich nach [2] wie folgt:

$$L''_{WA} = L_I - R'_W - 4$$

 L''_{WA} flächenbezogener Schallleistungspegel pro m²

 L_I : Innenpegel

 R'_{W} : Schalldämmmaß der Tore \geq **18 dB**

Der Innenpegel setzt sich dabei aus den Schallleistungspegeln der einzelnen Geräuschquellen gemäß Tabelle 2 zusammen. Details sind den nachfolgenden Kapiteln zu entnehmen.

Tabelle 2: Übersicht der Teilpegel im Wirtschaftshof

	Schallleistung L _w [dB(A)]
Fahrzeuggeräusche LKW	87,7
Fahrzeuggeräusche PKW / Transporter	82,3
Presscontainer	67,2
Schrott	80,6
Gesamt-Schallleistung im Raum	89,4

Der resultierende Innenpegel ergibt sich aus

$$L_I = L_w + 14 + 10 * log_{10}(0,16/A_{eq})$$

 L_I Innenpegel

 L_w : Schallleistungspegel im Raum

 A_{eq} : äquivalente Schallabsorptionsfläche; hier. $A_{eq} = 264 \text{ m}^2$

Die Berechnung der äquivalenten Schallabsorptionsfläche des Wirtschaftshofs ist in der nachfolgenden Tabelle dargestellt.

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Ingenieure aus
Leidenschaft

plan

Tabelle 3: Äquivalente Schallabsorptionsfläche der Tiefgarage.

Bauteil	Fläche	Oberfläche	Absorptionsgrad α _w	Äquivalente Schallabsorptionsfläche A
Boden	350	Beton	0,03	11
Decke	35	Beton	0,03	1
Decke absor- bierend	315	Holzwolle- Dämmplatten	0,8	252
*\			Summe	264 m²

^{*)} Alternativ können auch andere Materialien mit gleichem Absorptionsgrad αw verwendet werden.

Es ergibt sich ein Innenpegel von $L_I = 71,2$ dB(A). Für die Schallabstrahlung der Tore ergeben sich somit folgende Ergebnisse:

Schallabstrahlung über die Tore (geschlossen): $L''_{WA} = 53 dB(A)/m^2$

Schallabstrahlung über die Tore (offen): $L''_{WA} = 71 dB(A)/m^2$

Aus Gründen des Immissionsschutzes sollen die Tore möglichst geschlossen gehalten werden und nur bei Ein- oder Ausfahrten geöffnet sein.

Bei 90 Durchfahrten pro Tag (45 Ladevorgängen von 13 LKW und 32 Transportern) und einer Öffnungsdauer des Tors von 2 Minuten je Durchfahrt ist das Tor am Tag für 1,5 Stunden geöffnet und für den übrigen Tagzeitraum geschlossen ist.

Es ergibt sich eine über den Tagzeitraum von 16 h gemittelte flächenbezogene Schallleistung je Tor von $L''_w = 72 \text{ dB(A)}$.

Zur Berücksichtigung der möglichen Tonhaltigkeit der Geräusche wird für die gesamte Einwirkzeit ein Zuschlag von 3 dB angesetzt. Kurzzeitige Geräuschspitzen werden mit einem Spitzenpegel von 115 dB(A) berücksichtigt.

4.1.2.1 An- und Abfahrten LKW

Die Emissionen der Fahrzeugbewegungen werden nach der LKW-Lärmstudie [3] berechnet. Die Anzahl der Lieferungen pro Tag richtet sich nach Prognosen des bisherigen Lieferverkehrs inklusive eines Zuschlags von 30%. Dabei wird die folgende Anzahl und Größe der LKW (im Mittel) berücksichtig:

- 10 Diesel LKW (P > 105 kW bzw. > 12 t)
- 3 Elektro-LKW (P > 105 kW bzw. > 12 t)

Für die Anlieferung fährt der LKW den Wirtschaftshof rückwärts an. Nach der Entladung fährt der LKW vorwärts auf gleichem Weg zurück und ordnet sich nördlich der CRONA-Klinik wieder in den fließenden, öffentlichen Verkehr ein. Die längenbezogene Schallleistung der LKW-Bewegungen werden nach [3, 4] wie folgt berechnet:

$$L'_W = L'_{WO} + 10 * log(n) - 10 * log(T_R/1 h)$$

 L_{W0}' auf die Beurteilungszeit und die Länge bezogener Schallleistungspegel

 L_{WO} zeitlich gemittelter Schallleistungspegel für 1 LKW/h

n Anzahl an LKW in der Beurteilungszeit

T_R Beurteilungszeit

Für die Rangiergeräusche der LKW während des Rückwärtsfahren wird auf den Schalleistungspegel ein Wert von 3 dB gemäß [3] addiert. Innerhalb des Wirtschaftshofs wird eine Weglänge von 10m bei 2 km/h (rückwärts einfahren) bzw. 5 km/h (vorwärts ausfahren) angesetzt. Außerhalb des Wirtschaftshofes wird eine Geschwindigkeit von 20 km/h berücksichtigt. Die Somit ergibt sich folgende Ergebnisse:

Tabelle 4: Emissionsberechnung der Fahrzeugbewegungen.

	L _W	n	T _R	Lw'1h	L _w '
	dB(A)		h	dB(A)	dB(A)
Innerhalb des Wirtschaftshofs					
LKW (P > 105 kW bzw. > 12 t)	97,4	10	16	60,4	58,5
E-LKW (P > 105 kW bzw. > 12 t)	88,9	3	16	51,2	43,3
Rangieren LKW	100,4	10	16	67,4	65,5
Rangieren E-LKW	91,9	3	16	58,9	51,0
	<u> </u>		S	Summe	66,5
Zu-/ Abfahrt* (Außenbereich)					
Zufahrt LKW (P > 105 kW bzw. > 12 t)	96	10	16	53	51,1
Zufahrt E-LKW (P > 105 kW bzw. > 12 t)	97,4	3	16	54,4	38,3
Abfahrt LKW (P > 105 kW bzw. > 12 t)	89,2	10	16	46,2	52,5
Abfahrt E-LKW (P > 105 kW bzw. > 12 t)	88,9	3	16	45,9	38
Rangieren LKW	100,4	10	16	56	54,1
Rangieren E-LKW	91,9	3	16	49,2	41,3

^{*} An- und Abfahrt außerhalb des Gebäudes werden in einer Linienschallquelle dargestellt.

4.1.2.2 Fahrzeuggeräusche LKW

Neben den Emissionen durch die Fahrzeugbewegungen werden auch Einzelgeräusche wie Motoranlassen, Türenschlagen und Motorleerlauf nach dem Taktmaximalverfahren [1] berücksichtigt. Die gemäß [3] berücksichtigenden Daten zur Berechnung der Emissionen der Einzelgeräusche und der daraus resultierende, anlagenbezogene Schallleistungspegel sind in der folgenden Tabelle dargestellt. Es sind keine Entspannungsgeräusche der Betriebsbremsen berücksichtigt. Hintergrund ist eine angrenzende Tempo 30 Zone, wobei sich der sich für die Geräusche ursächliche Druck im Bremssystem nicht aufbaut.

Tabelle 5: Emissionsberechnung der Fahrzeugeinzelgeräusche LKW

	Lwo	n	T _E	T_{R}	Lw
	dB(A)		sec/h	h	dB(A)
Anlassen	100	13	5	16	70,5
Türenschlagen	100	26	5	16	73,5
Leerlauf	94	26	30	16	75,3
			,	Summe	78,3

Für den Maximalpegel wird gemäß [3] ein Wert von 108 dB (A) angenommen, was dem Maximalpegel von Betriebsbremsen entspricht.

4.1.2.3 Be- und Entladevorgänge LKW

Das Be- und Entladen des LKWs erfolgt innerhalb des Wirtschaftshofs. Die maßgeblichen Emissionen entstehen durch die Hubwagenbewegungen sowie durch die Geräusche, die beim Überfahren und Heben/Senken der fahrzeugeigenen Ladebordwand entstehen. Die Schallemissionen werden in den Gesamt-Schallpegel innerhalb des Wirtschaftshofs einberechnet und somit bei der Schallabstrahlung über die Tore berücksichtigt.

Der längenbezogene Schallleistungspegel der Hubwagenbewegungen berechnet sich gemäß [3] wie folgt:

$$L'_{WAT} = L_{WAT} - 37 + 10 * \log(M) - 10 * \log(T_R/1 h)$$

 L'_{WAT} auf die Beurteilungszeit und die Länge bezogener Schallleistungspegel L_{WAT} Schallleistungspegel eines Hubwagens inkl. Impulszuschlag auf Asphalt

M Anzahl der Bewegungen

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Es wird davon ausgegangen, dass je Anlieferung 3 Entladungen erfolgen, so dass unter Berücksichtigung des Hin- und Rückwegs je LKW 6 Hubwagenbewegungen entstehen. Der daraus resultierende längenbezogene Schallleistungspegel je LKW ist in der folgenden Tabelle dargestellt.

Tabelle 6: Emissionsberechnung der Hubwagenbewegungen.

	L_{WAT}	m	T_{R}	L'WAT,LKW
	dB(A)		h	dB(A)
Hubwagen (v =1,4 m/s)	94	78	16	62,7

Mit Berücksichtigung der 13 LKW pro Tag ergibt sich eine Gesamt-Schallleistung von L'_{WAT,gesamt} = **73,9 dB(A)**. Die maximale Schallleistung wird gemäß [3] für die Hubwagenbewegungen mit einem Wert von 102 dB(A) angesetzt.

Des Weiteren werden die Geräusche, welche beim Überfahren der Ladebordwand mittels Hubwagen bzw. Flurförderfahrzeug sowie während der Hebe- und Absenkvorgänge der Ladebordwand entstehen, berücksichtigt. Auch hier werden wieder je Entladung zwei Vorgänge für die Hin- und Rückfahrt berücksichtigt. Für das Öffnen und Schließen der Ladebordwand vor und nach der Entladung werden zwei weitere Hebe- bzw. Absenkvorgänge berücksichtigt. Für die Dauer eines Hebe- bzw. Absenkvorgangs wird von 20 Sekunden ausgegangen. Beim Überfahren der Ladebordwand werden neben den Emissionen des Handhubwagens auch die Rollgeräusche des Wagenbodens berücksichtigt. Für die Berechnung der Schallleistung werden die Emissionsansätze der Ergänzung zur LKW-Lärmstudie [5] verwendet. Die daraus resultierenden Emissionen je LKW sind in der folgenden Tabelle dargestellt:

Tabelle 7: Emissionsberechnung der Ladebordwand (Überfahren + Heben/Senken)

	L _{WA,1h}	m	T_R	L_{WA}
	dB(A)	(je LKW)	h	dB(A)
Überfahren der Ladebordwand (leer)	79,6	39	16	72,3
Überfahren der Ladebordwand (voll)	75,5	39	16	68,2
Rollgeräusche Wagenboden	71,8	78	16	67,5
Heben / Senken der Ladebordwand	98 ¹⁾	104	16	72,4
	'	1	Summe	75,8

¹⁾ Der angegebene Schallleistungspegel beinhaltet keine zeitliche Mittelung. Es wird je Vorgang eine Dauer von 20 Sekunden angesetzt.

Für 13 LKW ergibt sich damit eine Gesamt-Schallleistung von L_w = 87 dB(A). Die maximale Schallleistung wird gemäß [6, 4] für das Überfahren der Ladebordwand mit einem Wert von 114 dB (A) berücksichtigt.

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

4.1.2.4 An- und Abfahrten Transporter

Die Emissionen der Fahrzeugbewegungen werden im Sinne eines Worst-Case-Ansatzes ebenfalls nach der LKW-Lärmstudie [3] berechnet da davon ausgegangen wird, dass die 4 Parkplätze von Kleintransportern genutzt werden. Es wird davon ausgegangen, dass im Tagzeitraum jeder Parkplatz im Schnitt zwei Stunden belegt ist. Dabei wird die folgende Anzahl und Größe der Fahrzeuge (im Mittel) berücksichtig:

• 32 Transporter (zul. Gesamtmasse < 12 t)

Im Gegensatz zu den großen LKW fährt der Transporter den Wirtschaftshof vorwärts an. Nach der Entladung fährt der LKW ebenfalls vorwärts auf gleichem Weg zurück und ordnet sich nördlich der CRONA-Klinik wieder in den fließenden, öffentlichen Verkehr ein. Die längenbezogene Schallleistung der LKW-Bewegungen werden nach [3] wie folgt berechnet:

$$L'_W = L'_{WO} + 10 * log(n) - 10 * log(T_R/1 h)$$

 L_{W0}' auf die Beurteilungszeit und die Länge bezogener Schallleistungspegel

 L_{WO} zeitlich gemittelter Schallleistungspegel für 1 LKW/h

n Anzahl an LKW in der Beurteilungszeit

T_R Beurteilungszeit

Innerhalb des Wirtschaftshofs wird eine Weglänge von 10m bei 5 km/h angesetzt. Somit ergibt sich folgende Ergebnisse:

Tabelle 8: Emissionsberechnung der Fahrzeugbewegungen.

. and one of Ennounce of Contraring a contraring	99				
	Lw	n	T_R	Lw' _{1h}	L _w '
	dB(A)		h	dB(A)	dB(A)
Innerhalb der Wirtschaftshofes					
Transporter (zul. Gesamtmasse < 12t)	88	32	16	51	54
Rangieren (zul. Gesamtmasse < 12t)	91	32	16	54	57
	•		5	Summe	68,8
Zu-/ Abfahrt* (Außenbereich)					
Transporter (zul. Gesamtmasse < 12t)	88	32	16	45	48
Rangieren (zul. Gesamtmasse < 12t)	91	32	16	48	51

^{*)} An- und Abfahrt außerhalb des Gebäudes werden in einer Linienschallquelle dargestellt.

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

4.1.2.5 Fahrzeuggeräusche Transporter

Neben den Emissionen durch die Fahrzeugbewegungen werden auch Einzelgeräusche wie Motoranlassen, Türenschlagen und Motorleerlauf nach dem Taktmaximalverfahren [1] berücksichtigt. Die gemäß [3] berücksichtigenden Daten zur Berechnung der Emissionen der Einzelgeräusche und der daraus resultierende, anlagenbezogene Schallleistungspegel sind in der folgenden Tabelle dargestellt.

Tabelle 9: Emissionsberechnung der Fahrzeugeinzelgeräusche Transporter

	Lwo	n	T _E	T_R	Lw
	dB(A)		sec/h	h	dB(A)
Anlassen	100	32	5	16	74,4
Türenschlagen	100	64	5	16	77,4
Leerlauf	94	64	30	16	79,2
	•		,	Summe	82,2

Die maximale Schallleistung wird gemäß [3] für das Türenschlagen mit einem Wert von 100 dB (A) angesetzt.

4.1.2.6 Be- und Entladevorgänge Transporter

Das Be- und Entladen der Transporter erfolgt innerhalb des Wirtschaftshofs. Die maßgeblichen Emissionen entstehen durch die Hubwagenbewegungen. Die Schallemissionen werden in den Gesamt-Schallpegel innerhalb des Wirtschaftshofs einberechnet und somit bei der Schallabstrahlung über die Tore berücksichtigt.

Der längenbezogene Schallleistungspegel der Hubwagenbewegungen berechnet sich gemäß [3] wie folgt:

$$L'_{WAT} = L_{WAT} - 37 + 10 * \log(M) - 10 * \log(T_R/1 h)$$

 L'_{WAT} auf die Beurteilungszeit und die Länge bezogener Schallleistungspegel

Schallleistungspegel eines Hubwagens inkl. Impulszuschlag auf Asphalt L_{WAT}

Μ Anzahl der Bewegungen

Es wird davon ausgegangen, dass je Anlieferung eine Entladung erfolgt. so dass unter Berücksichtigung des Hin- und Rückwegs je Stunde 2 Hubwagenbewegungen entstehen. Der daraus resultierende längenbezogene Schallleistungspegel je Transporter ist in der folgenden Tabelle dargestellt.

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Tabelle 10: Emissionsberechnung der Hubwagenbewegungen.

	L_{WAT}	m	T_R	L'wat
	dB(A)	-	h	dB(A)
Hubwagen (v =1,4 m/s)	94	64	16	48,0

Bei 32 Transportern ergibt sich eine Gesamt-Schallleistung von L_w = 63 dB(A). Die maximale Schallleistung wird gemäß [3] für die Hubwagenbewegungen mit einem Wert von 102 dB(A) angesetzt.

4.1.2.7 Müllsammelanlage

Auch die Nutzung der Müllsammelanlage erfolgt ausschließlich im Tagzeitraum. Es gibt eine Papierpresse sowie Container für Holz, Metall, Elektro und Mischmaterial.

Papiercontainer

Von der Müllsammelanlage werden zunächst die Pressvorgänge des Papiercontainers berücksichtigt. Es wird von einem Pressvorgang pro Stunde ausgegangen, die Nutzung erfolgt ausschließlich im Tagzeitraum.

Die Schallleistung der Presse wird mit 85 dB(A) angesetzt. Bei einer Dauer des Pressvorgangs von 60 Sekunden ergibt sich somit eine mittlere Schallleistung der Presse von L_{wa} = 67,2 dB(A).

Schrottsammlung

Für die weiteren Container wird angenommen, dass diese pro Stunde für 2 Minuten beladen werden. Dabei werden folgende Ansätze getroffen:

	L_{WA}	Dauer	Anzahl	T_R	L _{WA,1h}
		je Beladung	Beladungen		
	dB(A)	s	m	h	dB(A)
Holz	85,0	120	16	16	70,2
Metall	95,0	120	16	16	80,2
Elektro	85,0	120	16	16	70,2
Mischmaterial	95,0	120	16	16	70,2
				Summe	83,7

4.2 CRONA Kliniken

Haustechnische Anlagen:

Haustechnischen Anlagen sind als Emittenten in der Beurteilung zu berücksichtigen. Die haustechnischen Lärmemittenten werden entsprechend den Angaben der Haustechnikplanung angesetzt. Zum Zeitpunkt der Berichterstellung liegen lediglich Angaben zu den Rückkühlern auf dem Dach des Bettenbaus vor.

Anlieferung CRONA

Die Versorgung des Bestands erfolgt über die westlich der Klinik gelegene Straße "Ob der Grafenhalde" angebunden. Die Einfahrt erfolgt über eine überdachte Passage, die bis zum Entladeort führt. Das Wendemanöver der abfahrenden LKWs liegt direkt am oberen Ende, neben dem Wirtschaftshof des Neubaus.

Im Wirtschaftshof erfolgt die Be- und Entladung von LKWs u.a. mit Wäsche, Getränken, Laborutensilien und –Proben. Auch die Müllcontainer des Klinikums sind dort angeordnet, zudem gibt es Kurzzeit-Parkplätze für Handwerker und sonstige Dienstleister.

Die Emissionsdaten der hier aufgeführten Schallquellen sowie deren rechnerische Ermittlung können – soweit bereits bekannt - den nachfolgenden Kapiteln entnommen werden.

Die örtliche Situation der Schallquellen ist in Abbildung 12 dargestellt.

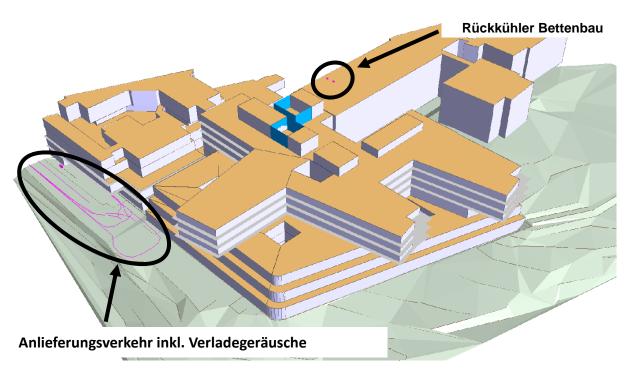


Abbildung 12: Lage der Schallemittenten – CRONA (Bestand Bettenbau)

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

4.2.1 Haustechnische Anlagen

Zum aktuellen Stand liegen ausschließlich Angaben zu den Rückkühlwerken des Bettenbaus vor. Nach Sichtung der Bestandpläne sowie der Sichtprüfung über Satellitenaufnahmen sind keine weiteren bezüglich des Schallimmissionsschutzes relevanten haustechnischen Anlagen erkennbar.

4.2.1.1 Rückkühlwerke Dach

Die Rückkühler auf dem Dach des Bettenbaus (siehe Abbildung 12) sind zum aktuellen Zeitpunkt nicht eingehaust. Von der Haustechnik wurde ein Gesamt-Schallleistungspegel mit $L_W = 82 \text{ dB(A)}$ angegeben. Die Anlage wird rund um die Uhr betrieben.

4.2.2 Anlieferung CRONA

Betriebszeit: 06-22 Uhr

Der Anlieferung liegt in in der Süd-West-Ecke des Gebäudes. Es sind folgende, lärmintensive Nutzungen vorgesehen:

- Anlieferung mit LKW (18t)
- Be- und Entladung mittels Hubwagen u. Gabelstapler
- Presscontainer für Papier
- Gitterboxen für Holz, Metall, Elektro, Mischmaterial
- Stellplätze für Dienstleister

Die Anlieferung des Wirtschaftshofs findet ausschließlich im Tagzeitraum zwischen 06:00 Uhr und 22:00 Uhr statt. Außerhalb des Tagzeitraums finden keine lärmintensiven Arbeiten im Hof statt.

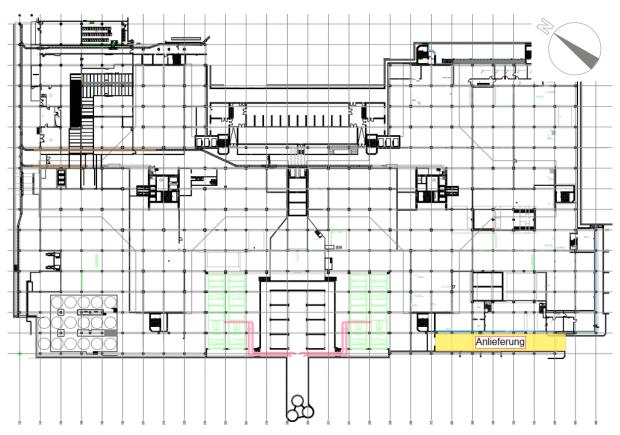


Abbildung 13: Lage der Anlieferung CRONA Ebene 1-2

Folgende Schallleistungspegel der einzelnen Geräuschquellen gemäß Tabelle 2 wurden zusammengetragen. Details sind den nachfolgenden Kapiteln zu entnehmen.

Tabelle 11: Übersicht der Teilpegel an der Anlieferung

	Schallleistung L _w [dB(A)]
Fahrzeuggeräusche LKW	84,3
Be- und Entladevorgänge LKW	66,7
Einzelgeräusche Ladebordwand	90,7
Einzelgeräusche PKW / Transporter	81,2
Be- und Entladevorgänge PKW / Transporter	63
Schrottpressen	67,2
Müllcontainer (Elektro / Holz)	70,2
Müllcontainer (Metall / Mischmaterial)	80,2

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Zur Berücksichtigung der möglichen Tonhaltigkeit der Geräusche wird für die gesamte Einwirkzeit ein Zuschlag von 3 dB angesetzt. Kurzzeitige Geräuschspitzen werden mit einem Spitzenpegel von 115 dB(A) berücksichtigt.

4.2.2.1 An- und Abfahrten LKW

Die Emissionen der Fahrzeugbewegungen werden nach der LKW-Lärmstudie [3] berechnet. Die Anzahl der Lieferungen pro Tag richtet sich nach der Verkehrszählung des bisherigen Lieferverkehrs. Dabei wird die folgende Anzahl und Größe der LKW berücksichtigt:

- 20 Diesel LKW (P > 105 kW bzw. > 12 t)
- 5 Elektro LKW (P > 105 kW bzw. > 12 t)

Für die Anlieferung fährt der LKW die Entladestelle rückwärts an. Nach der Entladung fährt der LKW vorwärts zurück, wobei er zum Ausholen eine Schlaufe vor dem Wirtschaftshof des Gelenkbaus fahren muss. Anschließend kann er sich nördlich der CRONA-Klinik wieder in den fließenden, öffentlichen Verkehr einordnen. Die längenbezogene Schallleistung der LKW-Bewegungen werden nach [3, 4] wie folgt berechnet:

$$L'_W = L'_{WO} + 10 * log(n) - 10 * log(T_R/1 h)$$

 L_{W0} auf die Beurteilungszeit und die Länge bezogener Schallleistungspegel

 L_{WO} zeitlich gemittelter Schallleistungspegel für 1 LKW/h

n Anzahl an LKW in der Beurteilungszeit

T_R Beurteilungszeit

Für die Rangiergeräusche der LKW während des Rückwärtsfahren wird auf den Schalleistungspegel ein Wert von 3 dB gemäß [3] addiert. Für die Zu- und Abfahrt wird eine Geschwindigkeit von 20 km/h berücksichtigt. Die Somit ergibt sich folgende Ergebnisse:

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)



Tabelle 12: Emissionsberechnung der Fahrzeugbewegungen.

	L_W	n	T_{R}	L _{W,1h} '	Lw'
	dB(A)		h	dB(A)	dB(A)
Zufahrt LKW (P > 105 kW bzw. > 12 t)	96	20	16	53,0	54,0
Zufahrt E-LKW (P > 105 kW bzw. > 12 t)	89,2	5	16	46,2	41,1
Abfahrt LKW (P > 105 kW bzw. > 12 t)	97,4	20	16	54,4	55,4
Abfahrt E-LKW (P > 105 kW bzw. > 12 t)	88,9	5	16	45,9	40,8
Rangieren LKW	100,4	20	16	56,0	57,0
Rangieren E-LKW	91,9	5	16	49,1	44,1

^{*} An- und Abfahrt außerhalb des Gebäudes werden in einer Linienschallquelle dargestellt.

4.2.2.2 Fahrzeuggeräusche LKW

Neben den Emissionen durch die Fahrzeugbewegungen werden auch Einzelgeräusche wie Motoranlassen, Türenschlagen und Motorleerlauf nach dem Taktmaximalverfahren [1] berücksichtigt. Die gemäß [3] berücksichtigenden Daten zur Berechnung der Emissionen der Einzelgeräusche und der daraus resultierende, anlagenbezogene Schallleistungspegel sind in der folgenden Tabelle dargestellt.

Tabelle 13: Emissionsberechnung der Fahrzeugeinzelgeräusche LKW

	L _{W0}	n	T _E	T_R	L _W
	dB(A)		sec/h	h	dB(A)
Anlassen	100	25	5	16	73,4
Türenschlagen	100	50	5	16	76,4
Leerlauf	94	50	30	16	78,2
	84,3				

Für den Maximalpegel wird gemäß [3] ein Wert von 108 dB (A) angenommen, was dem Maximalpegel von Betriebsbremsen entspricht.

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

4.2.2.3 Be- und Entladevorgänge LKW

Das Be- und Entladen des LKWs erfolgt innerhalb des Wirtschaftshofs. Die maßgeblichen Emissionen entstehen durch die Hubwagenbewegungen sowie durch die Geräusche, die beim Überfahren und Heben/Senken der fahrzeugeigenen Ladebordwand entstehen. Die Schallemissionen werden in den Gesamt-Schallpegel innerhalb des Wirtschaftshofs einberechnet und somit bei der Schallabstrahlung über die Tore berücksichtigt.

Der längenbezogene Schallleistungspegel der Hubwagenbewegungen berechnet sich gemäß [3] wie folgt:

$$L'_{WAT} = L_{WAT} - 37 + 10 * \log(M) - 10 * \log(T_R/1 h)$$

 L'_{WAT} auf die Beurteilungszeit und die Länge bezogener Schallleistungspegel L_{WAT} Schallleistungspegel eines Hubwagens inkl. Impulszuschlag auf Asphalt M mittlere Anzahl der Bewegungen pro Stunde

Es wird davon ausgegangen, dass je Anlieferung 3 Entladungen erfolgen, so dass unter Berücksichtigung des Hin- und Rückwegs je LKW 6 Hubwagenbewegungen entstehen. Der daraus resultierende längenbezogene Schallleistungspegel je LKW ist in der folgenden Tabelle dargestellt.

Tabelle 14: Emissionsberechnung der Hubwagenbewegungen.

	L_{WAT}	m	T_R	L' _{WAT}
	dB(A)	-	h	dB(A)
Hubwagen (v =1,4 m/s)	94	135	16	52,7

Bei einer Anzahl von 25 LKW's ergibt sich eine Gesamt-Schallleistung von L_w = 66,7 dB(A). Die maximale Schallleistung wird gemäß [3] für die Hubwagenbewegungen mit einem Wert von 102 dB(A) angesetzt.

Des Weiteren werden die Geräusche, welche beim Überfahren der Ladebordwand mittels Hubwagen bzw. Flurförderfahrzeug sowie während der Hebe- und Absenkvorgänge der Ladebordwand entstehen, berücksichtigt. Auch hier werden wieder je Entladung zwei Vorgänge für die Hin- und Rückfahrt berücksichtigt. Für das Öffnen und Schließen der Ladebordwand vor und nach der Entladung werden zwei weitere Hebe- bzw. Absenkvorgänge berücksichtigt. Für die Dauer eines Hebe- bzw. Absenkvorgangs wird von 20 Sekunden ausgegangen. Beim Überfahren der Ladebordwand werden neben den Emissionen des Handhubwagens auch die Rollgeräusche des Wagenbodens berücksichtigt. Für die Berechnung der Schallleistung werden die Emissionsansätze der Ergänzung zur LKW-Lärmstudie [6] verwendet. Die daraus resultierenden Emissionen je LKW sind in der folgenden Tabelle dargestellt:

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Ingenieure aus Leidenschaft

Tabelle 15: Emissionsberechnung der Ladebordwand (Überfahren + Heben/Senken)

	L _{WA,1h}	m	T_R	Lwa
	dB(A)	-	h	dB(A)
Überfahren der Ladebordwand (leer)	79,6	75	16	72,3
Überfahren der Ladebordwand (voll)	75,5	75	16	68,2
Rollgeräusche Wagenboden	71,8	150	16	67,5
Heben / Senken der Ladebordwand	98 ¹⁾	200	16	72,4
	•		Summe	76,7

¹⁾ Der angegebene Schallleistungspegel beinhaltet keine zeitliche Mittelung. Es wird je Vorgang eine Dauer von 20 Sekunden angesetzt.

Für 32 LKW ergibt sich damit eine Gesamt-Schallleistung von L_w = **90,7 dB(A)**. Die maximale Schallleistung wird gemäß [6, 4] für das Überfahren der Ladebordwand mit einem Wert von 114 dB (A) berücksichtigt.

4.2.2.4 An- und Abfahrten Transporter

Die Emissionen der Fahrzeugbewegungen werden im Sinne eines Worst-Case-Ansatzes ebenfalls nach der LKW-Lärmstudie [3] berechnet da davon ausgegangen wird, dass die 4 Parkplätze von Kleintransportern genutzt werden. Es wird davon ausgegangen, dass im Tagzeitraum jeder Parkplatz im Schnitt zwei Stunden belegt ist. Dabei wird die folgende Anzahl und Größe der Fahrzeuge (im Mittel) berücksichtig:

32 Transporter (zul. Gesamtmasse < 12 t)

Der Transporter fährt die Anlieferung genau wie die LKW's rückwärts an. Nach der Entladung fährt der Transporter ebenfalls vorwärts auf gleichem Weg zurück und ordnet sich nördlich der CRONA-Klinik wieder in den fließenden, öffentlichen Verkehr ein. Die längenbezogene Schallleistung der Transporter-Bewegungen werden nach [3] wie folgt berechnet:

$$L'_W = L'_{WO} + 10 * log(n) - 10 * log(T_R/1 h)$$

 L_{W0} auf die Beurteilungszeit und die Länge bezogener Schallleistungspegel

 L_{WO} zeitlich gemittelter Schallleistungspegel für 1 LKW/h

n Anzahl an LKW in der Beurteilungszeit

 T_R Beurteilungszeit

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Ingenieure aus
Leidenschaft

Dlan

Tabelle 16: Emissionsberechnung der Fahrzeugbewegungen.

	L _W	n	T_{R}	L _{W,1h} '	Lw'
	dB(A)		h	dB(A)	dB(A)
Transporter (zul. Gesamtmasse < 12t)	88	32	16	45	48
Rangieren (zul. Gesamtmasse < 12t)	91	32	16	48	51

^{*)} An- und Abfahrt außerhalb des Gebäudes werden in einer Linienschallquelle dargestellt.

4.2.2.5 Fahrzeuggeräusche Transporter

Neben den Emissionen durch die Fahrzeugbewegungen werden auch Einzelgeräusche wie Motoranlassen, Türenschlagen und Motorleerlauf nach dem Taktmaximalverfahren [1] berücksichtigt. Die gemäß [3] berücksichtigenden Daten zur Berechnung der Emissionen der Einzelgeräusche und der daraus resultierende, anlagenbezogene Schallleistungspegel sind in der folgenden Tabelle dargestellt.

Tabelle 17: Emissionsberechnung der Fahrzeugeinzelgeräusche Transporter

	L _{W0}	n	T _E	T_R	L _w
	dB(A)		sec/h	h	dB(A)
Anlassen	100	32	5	16	74,4
Türenschlagen	100	64	5	16	77,4
Leerlauf	94	64	30	16	79,2
	•			Summe	82,2

Die maximale Schallleistung wird gemäß [3] für das Türenschlagen mit einem Wert von 100 dB (A) angesetzt.

4.2.2.6 Be- und Entladevorgänge Transporter

Das Be- und Entladen der Transporter erfolgt innerhalb des Wirtschaftshofs. Die maßgeblichen Emissionen entstehen durch die Hubwagenbewegungen. Die Schallemissionen werden in den Gesamt-Schallpegel innerhalb des Wirtschaftshofs einberechnet und somit bei der Schallabstrahlung über die Tore berücksichtigt.

Der längenbezogene Schallleistungspegel der Hubwagenbewegungen berechnet sich gemäß [3] wie folgt:

$$L'_{WAT} = L_{WAT} - 37 + 10 * \log(M) - 10 * \log(T_R/1 h)$$

 L'_{WAT} auf die Beurteilungszeit und die Länge bezogener Schallleistungspegel

 L_{WAT} Schallleistungspegel eines Hubwagens inkl. Impulszuschlag auf Asphalt

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

M Anzahl der Bewegungen

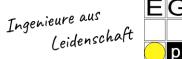
Es wird davon ausgegangen, dass je Anlieferung eine Entladung erfolgt. so dass unter Berücksichtigung des Hin- und Rückwegs je Stunde 2 Hubwagenbewegungen entstehen. Der daraus resultierende längenbezogene Schallleistungspegel je Transporter ist in der folgenden Tabelle dargestellt.

Tabelle 18: Emissionsberechnung der Hubwagenbewegungen.

	L _{WAT}	m	T_R	L' _{WAT}
	dB(A)	-	h	dB(A)
Hubwagen (v =1,4 m/s)	94	64	16	48,0

Bei 32 Transportern ergibt sich eine Gesamt-Schallleistung von L_w = 63 dB(A). Die maximale Schallleistung wird gemäß [3] für die Hubwagenbewegungen mit einem Wert von 102 dB(A) angesetzt.

4.2.2.7 Müllsammelanlage


Auch die Nutzung der Müllsammelanlage erfolgt ausschließlich im Tagzeitraum. Es gibt eine Papierpresse sowie Container für Holz, Metall, Elektro und Mischmaterial.

Papiercontainer

Von der Müllsammelanlage werden zunächst die Pressvorgänge des Papiercontainers berücksichtigt. Es wird von einem Pressvorgang pro Stunde ausgegangen, die Nutzung erfolgt ausschließlich im Tagzeitraum.

Die Schallleistung der Presse wird mit 85 dB(A) angesetzt. Bei einer Dauer des Pressvorgangs von 60 Sekunden ergibt sich somit eine mittlere Schallleistung der Presse von $L_{WA} = 67,2 dB(A)$.

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Schrottsammlung

Für die weiteren Container wird angenommen, dass diese pro Stunde für 2 Minuten beladen werden. Dabei werden folgende Ansätze getroffen:

	L_{WA}	Dauer	Anzahl	T _R	$L_{WA,1h}$
		je Beladung	Beladungen		
	dB(A)	S	m	h	dB(A)
Holz	85,0	120	16	16	70,2
Metall	95,0	120	16	16	80,2
Elektro	85,0	120	16	16	70,2
Mischmaterial	95,0	120	16	16	70,2
				Summe	83,7

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

5 Beurteilungsgrundlagen

5.1 Immissionsrichtwerte nach TA-Lärm (außerhalb von Gebäuden)

Wie in Kapitel 3 erläutert sind nach erfolgter Abstimmung mit dem Landratsamt folgende Immissionsrichtwerte zur Beurteilung der Immissionen heranzuziehen:

Immissionsort	IRW ¹⁾ , tags	IRW ¹⁾ , nachts
	in dB (A)	in dB (A)
Bettenräume	45	35
Büro- und Diensträume	60	45

¹⁾ IRW: Immissionsrichtwerte nach TA-Lärm

Der Tagzeitraum erstreckt sich von 06:00 bis 22:00 Uhr. Der Nachtzeitraum erstreckt sich von 22:00 bis 06:00 Uhr.

Einzelne kurzzeitige Geräuschspitzen dürfen die vorher genannten Immissionsrichtwerte zum Tagzeitraum um nicht mehr als 30 dB(A) und in der Nacht um nicht mehr als 20 dB(A) überschreiten.

5.2 Immissionsrichtwerte nach TA-Lärm (innerhalb von Gebäuden)

Bei Geräuschübertragungen innerhalb von Gebäuden oder bei Körperschallübertragung betragen die Immissionsrichtwerte für den Beurteilungspegel für betriebsfremde schutzbedürftige Räume nach DIN 4109 [7], Ausgabe November 1989, unabhängig von der Lage des Gebäudes und unabhängig von der Gebietsnutzung:

Tags: 35 dB(A)

Nachts: 25 dB(A).

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte um nicht mehr als 10 dB(A) überschreiten.

Die Immissionsrichtwerte sind vom Betreiber zu beachten. Der Luftschallschutz wird im Schallschutznachweis nach DIN 4109 abgehandelt. Geräte sind körperschallentkoppelt aufzustellen und zu montieren.

5.3 Maßgeblicher Immissionsort

Gemäß TA-Lärm liegt bei bebauten Flächen der maßgebliche Immissionsort 0,5 m außerhalb vor der Mitte des geöffneten Fensters des vom Geräusch am stärksten betroffenen schutzbedürftigen Raumes.

5.3.1 Immissionsorte Gelenkbau (NMK)

In der folgenden Abbildung sind die Immissionsorte, auf welche sich die Tabelle 19 bezieht, dargestellt.

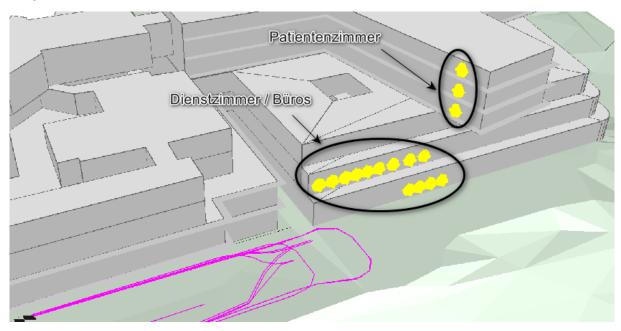


Abbildung 14: Lage der Immissionsorte NMK

5.3.2 Immissionsorte CRONA

In der folgenden Abbildung sind die Immissionsorte, auf welche sich die Tabelle 20 bezieht, dargestellt.

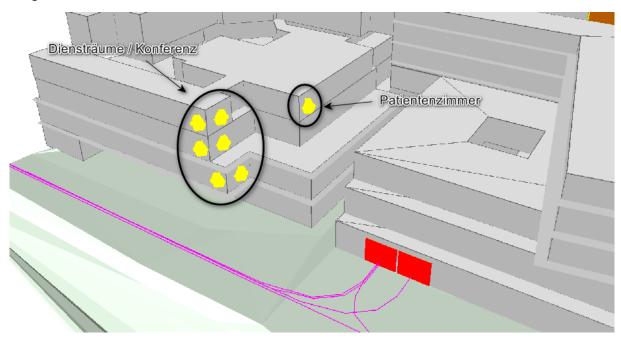


Abbildung 15: Lage der Immissionsorte CRONA.

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

5.3.3 Immissionsorte Bettenbau

In der folgenden Abbildung sind die Immissionsorte, auf welche sich die Tabelle 20 bezieht, dargestellt.

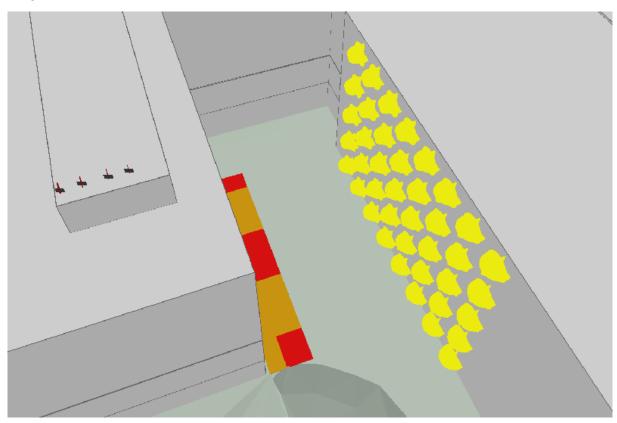


Abbildung 16: Lage der Immissionsorte Bettenbau.

5.4 Zuschläge

Bei den Schallquellen wurden die in Kapitel 4 beschriebenen Zuschläge für Ton-, Informationsoder Impulshaltigkeit berücksichtigt. Des Weiteren werden für die Bettenzimmer (Pflegeheim Einstufung) die Zuschläge für die Tageszeiten mit erhöhter Empfindlichkeit berücksichtigt.

5.5 Allgemeine Vorgehensweise

Die Ermittlung der zu erwartenden Geräuschimmissionen an den Gebäuden erfolgt rechnerisch mittels eines digitalen Berechnungsmodells. Dieses Berechnungsmodell, das die Vorgaben der TA Lärm berücksichtigt, ist im Datenanhang (Anlage 1 und 4) näher erläutert. Die relevanten Geräuschquellen werden innerhalb des Berechnungsmodells durch Punkt-, Linieund Flächenschallquellen berücksichtigt.

Berichtsnr.: E22352-SIS-TAL-01

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

6 Ergebnisse der Berechnungen

Unter Berücksichtigung der vorab aufgeführten Schallemissionen sowie dem digitalen Gelände- und Gebäudemodell wurde mittels des Programms Soundplan Version 9.0 die nachfolgenden Beurteilungspegel berechnet. Die Ergebnisse der Immissionsberechnungen sind im Datenanhang (siehe Anlagen 5 - 7) sowie in Tabelle 19,

Tabelle 20 & Tabelle 21 zusammengestellt.

Tabelle 19: Ergebnisse der Berechnung. Höchste Pegel an den Immissionsorten Gelenkbau

Immissionsort			lungspe- dB(A)	IRW ¹⁾ i	n dB(A)	Überschreitung der Richtwerte		
IM	Gebiet	Tag	Nacht	Tag	Nacht	Tag	Nacht	
15.1.3 Befundung	MI	44,7	11,9	60	45	Nein	Nein	
15.2.4 Dienstraum	MI	47,8	11,9	60	45	Nein	Nein	
15.2.5 Dienstraum	MI	46,2	12,0	60	45	Nein	Nein	
15.2.8. Dienstraum	MI	45,4	11,9	60	45	Nein	Nein	
15.2.13 Dienstraum Besprechung	MI	48,6	11,9	60	45	Nein	Nein	
15.2.18 Dienstraum GF Sekr.	MI	47,2	12,0	60	45	Nein	Nein	
15.2.19 Dienstraum Sekr.	MI	46,7	12,0	60	45	Nein	Nein	
15.2.20. Dienstraum Sekr.	MI	46,4	12,0	60	45	Nein	Nein	
15.2.25 Pers. Auf	MI	45,0	11,9	60	45	Nein	Nein	
47.1.1 Pers. Auf	MI	44,9	11,6	60	45	Nein	Nein	
47.1.2 Dienstraum Itd. TA	MI	45,8	11,7	60	45	Nein	Nein	
47.1.3 Dienstraum Arzt	MI	45,3	11,7	60	45	Nein	Nein	
47.2.6 Gerinnungsla- bor	MI	44,4	11,6	60	45	Nein	Nein	
Patientenzimmer 4.OG	SOK	45,1	12,1	45	35	Nein	Nein	
Patientenzimmer 5.OG	SOK	43,7	12,2	45	35	Nein	Nein	
Patientenzimmer 6.0G	SOK	42,1	19,5	45	35	Nein	Nein	

1)IRW: Immissionsrichtwerte nach TA-Lärm

Berichtsnr.: E22352-SIS-TAL-01

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

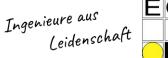


Tabelle 20: Ergebnisse der Berechnung. Höchste Pegel an den Immissionsorten CRONA

Immissionsort			lungspe- dB(A)	IRW ¹⁾ i	n dB(A)	Überschreitung der Richtwerte		
IM	Gebiet	Tag	Nacht	Tag	Nacht	Tag	Nacht	
CRONA B – E02 Dienstraum Süd 1.OG	MI	54,5	11,9	60	45	Nein	Nein	
CRONA B – E02 Dienstraum West 1.OG	MI	54,4	11,9	60	45	Nein	Nein	
CRONA B – E02 Konferenz Süd 2.OG	MI	52,7	12,0	60	45	Nein	Nein	
CRONA B – E02 Konferenz Süd 3.OG	MI	52,6	11,9	60	45	Nein	Nein	
CRONA B – E02 Konferenz West 2.OG	MI	51,0	11,9	60	45	Nein	Nein	
CRONA B – E02 Konferenz West 3.OG	MI	52,6	12,0	60	45	Nein	Nein	
CRONA B – E04 Patientenzimmer	SOK	43,4	13,6	45	35	Nein	Nein	

¹⁾ IRW: Immissionsrichtwerte nach TA-Lärm

Tabelle 21: Ergebnisse der Berechnung. Höchste Pegel an den Immissionsorten Bettenbau

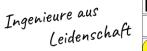
Immissionsort		lungspe- dB(A)	IRW ¹⁾ i	n dB(A)	Überschreitun der Richtwerte		
IM	Gebiet	Tag	Nacht	Tag	Nacht	Tag	Nacht
Bettenbau – 3.561 Patientenzimmer	SOK	40,4	13,8	45	35	Nein	Nein
Bettenbau – 3.562 Patientenzimmer	SOK	41,0	13,7	45	35	Nein	Nein
Bettenbau – 3.563 Patientenzimmer	SOK	41,5	13,6	45	35	Nein	Nein
Bettenbau – 3.564 Patientenzimmer	SOK	41,9	13,5	45	35	Nein	Nein
Bettenbau – 3.565 Patientenzimmer	SOK	42	14,1	45	35	Nein	Nein
Bettenbau – 4.565 Patientenzimmer	SOK	41,2	14,1	45	35	Nein	Nein

Berichtsnr.: E22352-SIS-TAL-01

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Bettenbau – 3.566 Patientenaufenthalt	SOK	41,7	14,2	45	35	Nein	Nein
Bettenbau – 2.567 Dienstraum	SOK	40,7	14,6	60	45	Nein	Nein
Bettenbau – 2.567 Laboratorium	MI	37,2	12,5	60	45	Nein	Nein
Bettenbau – 3.567 Dienstraum	MI	40,1	16,4	60	45	Nein	Nein

¹⁾ IRW: Immissionsrichtwerte nach TA-Lärm


6.1 Ergebnisse Tagzeitraum

Die Richtwerte für ein Kurgebiet werden zum Teil am Gelenkbau bei Dienst-/ und allgemeinen Arbeitsräume überschritten. Da die Räumlichkeiten nicht der Erholung dienen sollen, ist auf Basis der Abstimmung mit dem Landratsamt Tübingen (Abtl. Umwelt und Gewerbe), die Überschreitungen der Richtwerte eines Kerngebietes in diesen Bereichen nicht geltend und ein Immissionsrichtwert von 60 dB(A) am Tag zugrunde zu legen. Auf dieser Grundlage werden für die Gebäude, CRONA & Gelenkbau, alle Richtwerte während des Tagzeitraums ohne zusätzliche Maßnahmen eingehalten. Des Weiteren werden die Richtwerte für den anliegenden Bettenbau ebenfalls eingehalten.

6.2 Ergebnisse Nachtzeitraum

Im Nachtzeitraum werden die der Beurteilung zugrundeliegenden Richtwerte an allen maßgeblichen Immissionsorten (CRONA, Gelenkbau & Bettenbau) ohne zusätzliche Maßnahmen eingehalten.

NMK Tübingen – Gelenkbau (1.BA)

7 Zusammenfassung

Innerhalb der vorliegenden schalltechnischen Untersuchung wurden die Geräuschemissionen der Lärmquellen am Neubau der NMK sowie an der bestehenden CRONA-Klinik ermittelt und die Einwirkung auf die Nachbarschaft im Rahmen einer Über-Kreuz-Betrachtung nach TA Lärm beurteilt. Diese Beurteilung wurde aufgrund der bereits bestehenden Überschreitungen und der gleichzeitigen betrieblichen Abhängigkeit der Gebäude von Seiten des Landratsamtes Tübingen vorgeschlagen. Hierbei werden jeweils die Schallimmission der CRONA-Klinik auf die Neue Medizinische Klinik und die Schallimmission der Neuen Medizinischen Klinik auf die CRONA-Klinik getrennt betrachtet. Zusätzlich wird die Schallimmission aus den Lärmquellen der Neuen Medizinischen Klinik auf den Bettenbau berücksichtigt.

Die zu erwartenden Schallimmissionen an den Gebäudefassaden sind dem Kapitel 6 zu entnehmen.

Die Immissionsrichtwerte für ein Kurgebiet werden im Nachtzeitraum an allen Immissionsorten eingehalten.

Die Immissionsrichtwerte für ein Kurgebiet werden im Tagzeitraum an allen Patientenzimmern eingehalten. Die in Abstimmung mit dem Landratsamt festgelegten erhöhten Immissionsrichtwerte am Tag (analog denen eines Mischgebiets) werden an allen anderen Immissionspunkten eingehalten.

Diese schalltechnische Untersuchung umfasst 42 Seiten Text und 13 Anlagen. Eine auszugsweise Weitergabe des Gutachtens bedarf der Zustimmung der Verfasser.

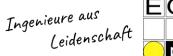
Stuttgart, den 29.04.2025

EGS-plan Ingenieurgesellschaft für Energie-, Gebäude- und Solartechnik mbH Gropiusplatz 10. 70563 Stuttgart

Isabel Fischer-Kiedaisch

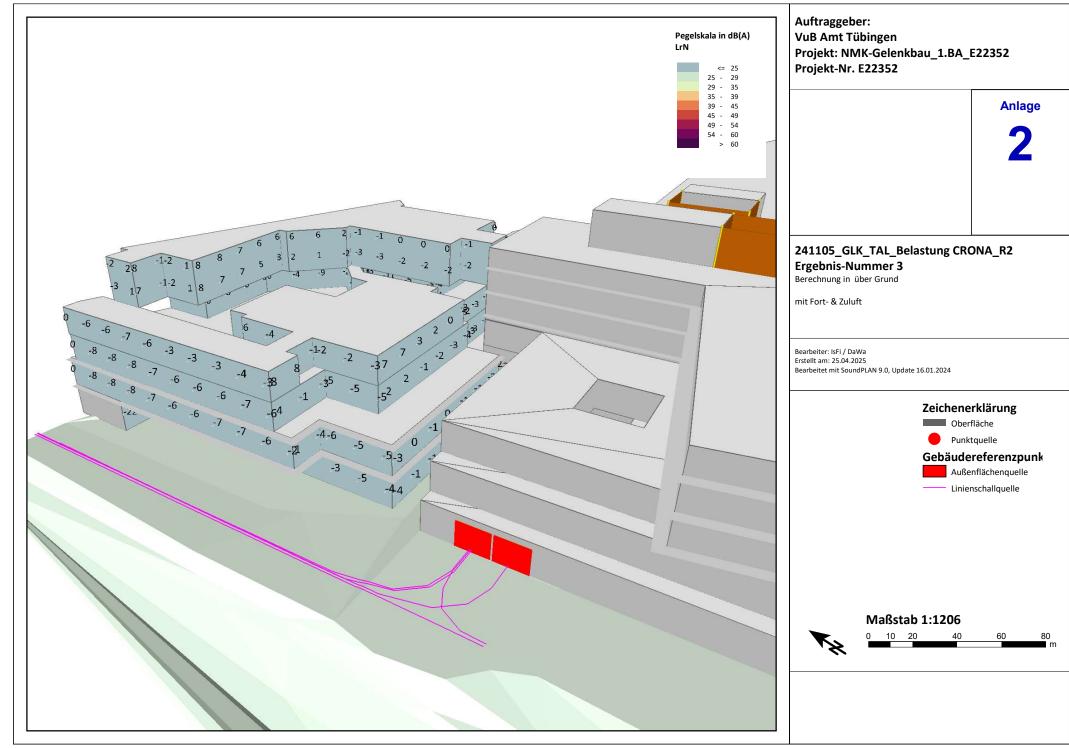
M.Sc.

Stv. Leitung Bauphysik

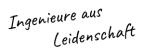

ppa. Armin Sattler Dipl. Ing (FH).

Abteilungsleiter Bauphysik

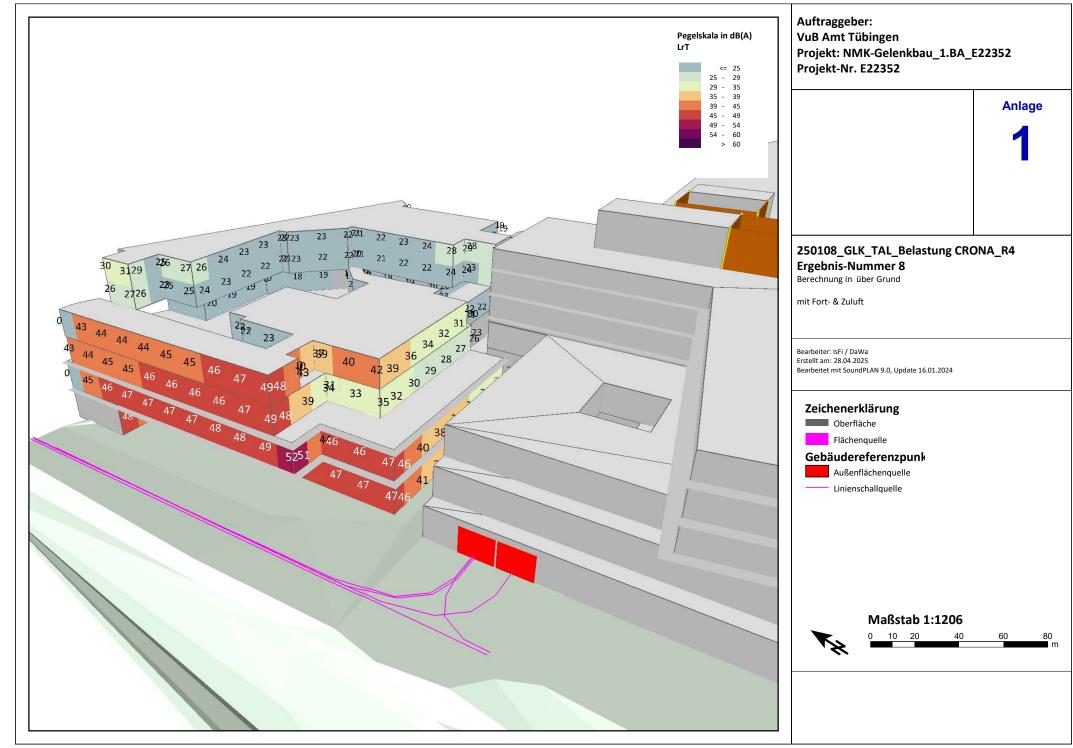
Prokurist


E22352-SIS-TAL-01

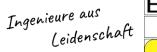
NMK Tübingen - Gelenkbau (1.BA)



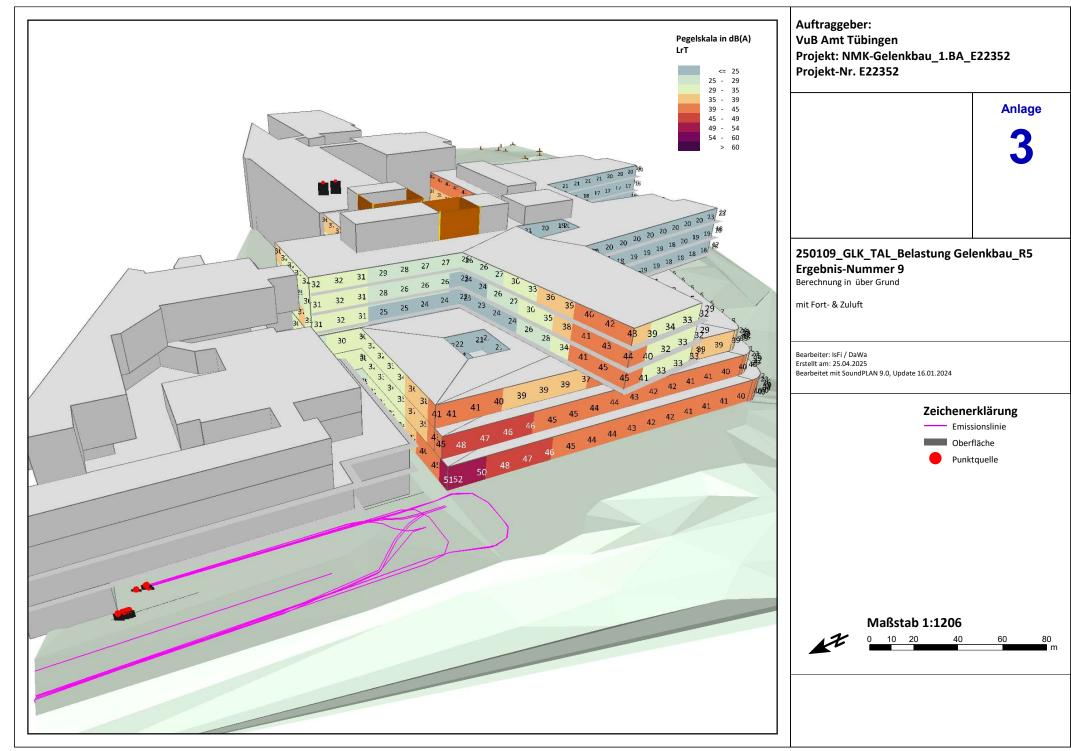
Anlage I Raster- und Gebäudelärmkarte Belastung CRONA Tag


E22352-SIS-TAL-01

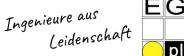
NMK Tübingen - Gelenkbau (1.BA)



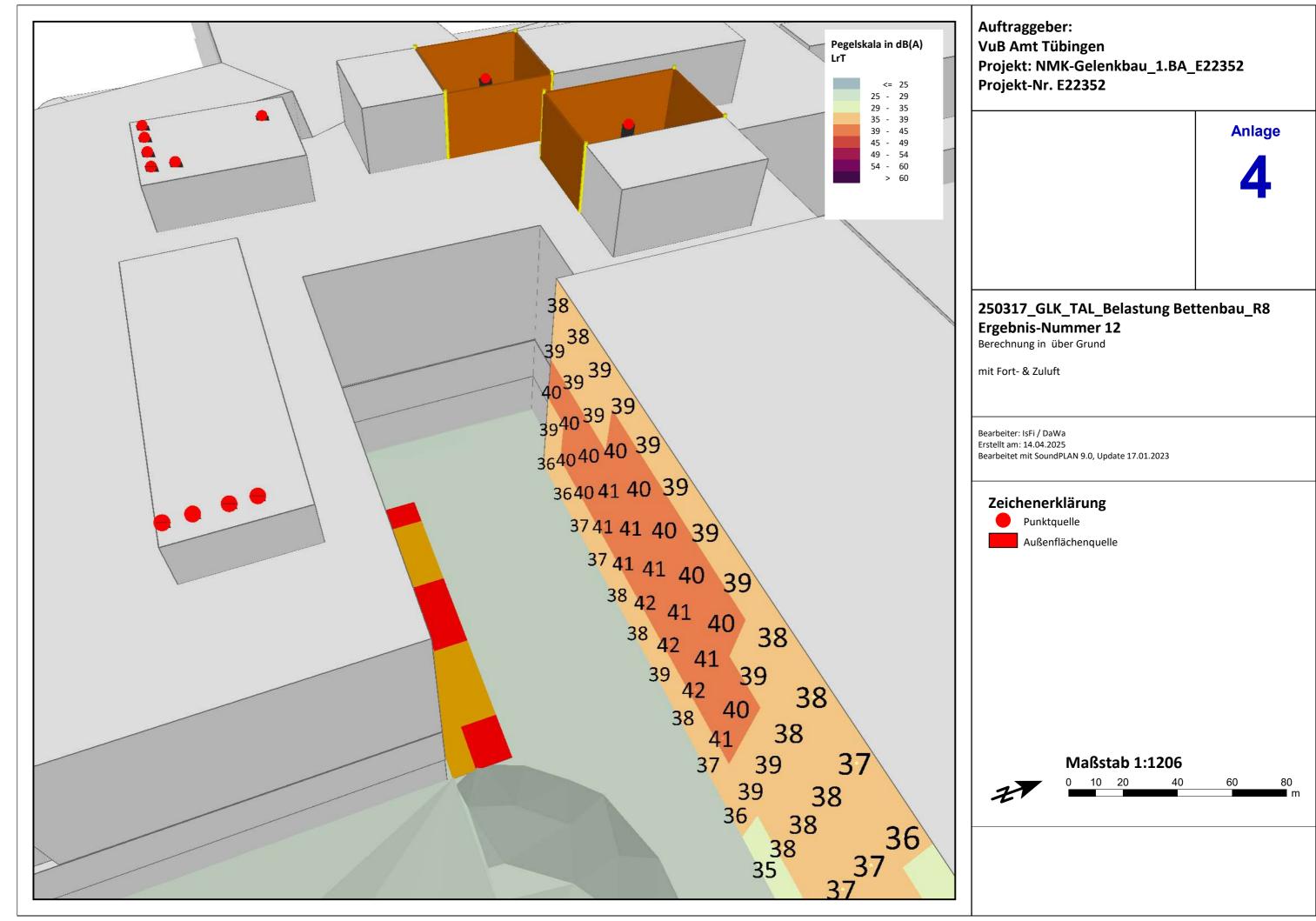
Anlage II Raster- und Gebäudelärmkarte Belastung CRONA Nacht


E22352-SIS-TAL-01

NMK Tübingen - Gelenkbau (1.BA)



Anlage III Raster- und Gebäudelärmkarte Belastung NMK Tag


E22352-SIS-TAL-01

NMK Tübingen – Gelenkbau (1.BA)

Anlage IV Raster- und Gebäudelärmkarte Belastung Bettenbau Tag

Berichtsnr.: E22352-SIS-TAL-01

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Anlage V Beurteilungspegel Belastung CRONA

5|

NMK-Gelenkbau_1.BA_E22352 Beurteilungspegel 250113_EP_TAL_Belastung CRONA_R7

Immissionsort	Nutzung	SW	HR	RW,T	RW,N	RW,T,max	LrT	RW,N,max	LrN	LrT,diff	LT,max	
				dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB	dB(A)	
Crona B - E02 Dienstraum West	MI	1.0G	W	60	45	90	51,5	65	7,8		71,2	
Crona B - E02 Dienstraum Süd	MI	1.0G	S	60	45	90	48,8	65	7,6		69,2	
Crona B - E03 Konferenz West	MI	3.OG	W	60	45	90	49,1	65	7,0		68,9	
Crona B - E03 Konferenz West	MI	2.OG	W	60	45	90	48,4	65	5,7		67,5	
Crona B - E03 Konferenz Süd	MI	2.OG	S	60	45	90	45,9	65	10,3		66,6	
Crona B - E03 Konferenz Süd	MI	3.OG	S	60	45	90	46,6	65	13,5		66,4	
Crona B - E04	SOK	4.OG	S	45	35	75	40,1	55	13,6		60,8	·

Berichtsnr.: E22352-SIS-TAL-01

Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

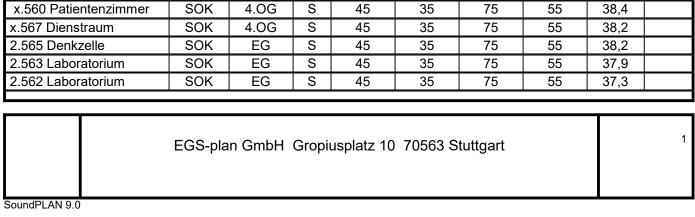
Anlage VI Beurteilungspegel Belastung NMK

6

NMK-Gelenkbau_1.BA_E22352 Beurteilungspegel 250113_EP_TAL_Belastung Gelenkbau_R6

Immissionsort	Nutzung	SW	HR	RW,T	RW,N	RW,T,max	LrT	RW,N,max	LrN	LrT,diff	LT,max	T,max,di	
				dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB	dB(A)	dB	
Patientenzimmer	SOK	4.OG	N	45	35	75	45,1	55	12,1	0,1	62,5		
		5.OG		45	35	75	43,7	55	12,2		61,8		ı
		6.OG		45	35	75	42,1	55	19,5		60,6		
47.2.6 Gerinnungslabor	MI	1.OG	W	60	45	90	44,4	65	11,6		64,6		
47.1.3 Dienstraum Arzt	MI	1.0G	W	60	45	90	45,3	65	11,7		65,5		
47.1.2 Dienstraum ltd. MTA	MI	1.0G	W	60	45	90	45,8	65	11,7		66,7		
47.1.1 Pers. auf.	MI	1.OG	W	60	45	90	44,9	65	11,6		65,0		
15.2.8 Dienstraum	MI	2.OG	W	60	45	90	45,4	65	11,9		66,4		
15.2.5 Dienstraum	MI	2.OG	W	60	45	90	46,2	65	12,0		67,6		
15.2.4 Dienstraum	MI	2.OG	W	60	45	90	47,8	65	11,9		70,3		
15.2.25 Pers. auf.	MI	2.OG	W	60	45	90	45,0	65	11,9		65,3		
15.2.20 Dienstraum Sekr.	MI	2.OG	W	60	45	90	46,4	65	12,0		68,7		
15.2.19 Dienstraum Sekr.	MI	2.OG	W	60	45	90	46,7	65	12,0		69,3		
15.2.18 Dienstraum GF Sekr.	MI	2.OG	W	60	45	90	47,2	65	12,0		69,8		
15.2.13 Dienstraum / Besprechung	MI	2.OG	W	60	45	90	48,6	65	11,9		70,1		
15.1.3 Befundung	MI	2.OG	W	60	45	90	44,7	65	11,9		65,0		

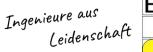
Berichtsnr.: E22352-SIS-TAL-01


Projekt-Name: NMK Tübingen – Gelenkbau (1.BA)

Anlage VII Beurteilungspegel BelastungBettenbau

NMK-Gelenkbau_1.BA_E22352 Beurteilungspegel 250317_EP_TAL_Belastung Bettenbau_R9

Immissionsort	Nutzung	SW	HR	RW,T	RW,N	RW,T,max	RW,N,max	LrT	
				dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
x.365 Patientenzimmer	SOK	1.0G	S	45	35	75	55	42,0	
x.364 Patientenzimmer	SOK	1.0G	S	45	35	75	55	41,9	
x.366 Pflegearbeit/Aufenthalt	SOK	1.0G	S	45	35	75	55	41,7	
x.563 Patientenzimmer	SOK	1.OG	S	45	35	75	55	41,5	
x.365 Patientenzimmer	SOK	2.OG	S	45	35	75	55	41,2	
x.364 Patientenzimmer	SOK	2.OG	S	45	35	75	55	41,2	
x.562 Patientenzimmer	SOK	1.OG	S	45	35	75	55	41,0	
x.563 Patientenzimmer	SOK	2.OG	S	45	35	75	55	40,9	
x.366 Pflegearbeit/Aufenthalt	SOK	2.OG	S	45	35	75	55	40,9	
x.567 Dienstraum	SOK	1.0G	S	45	35	75	55	40,7	
x.562 Patientenzimmer	SOK	2.OG	S	45	35	75	55	40,6	
x.561 Patientenzimmer	SOK	1.OG	S	45	35	75	55	40,4	
x.364 Patientenzimmer	SOK	3.OG	S	45	35	75	55	40,2	
x.365 Patientenzimmer	SOK	3.OG	S	45	35	75	55	40,2	
x.561 Patientenzimmer	SOK	2.OG	S	45	35	75	55	40,1	
x.567 Dienstraum	SOK	2.OG	S	45	35	75	55	40,1	
x.563 Patientenzimmer	SOK	3.OG	S	45	35	75	55	40,1	
x.366 Pflegearbeit/Aufenthalt	SOK	3.OG	S	45	35	75	55	39,9	
x.560 Patientenzimmer	SOK	1.OG	S	45	35	75	55	39,8	
x.560 Patientenzimmer	SOK	2.OG	S	45	35	75	55	39,8	
x.562 Patientenzimmer	SOK	3.OG	S	45	35	75	55	39,5	
x.561 Patientenzimmer	SOK	3.OG	S	45	35	75	55	39,4	
x.567 Dienstraum	SOK	3.OG	S	45	35	75	55	39,3	
x.364 Patientenzimmer	SOK	4.OG	S	45	35	75	55	39,2	
x.365 Patientenzimmer	SOK	4.OG	S	45	35	75	55	39,1	
x.563 Patientenzimmer	SOK	4.OG	S	45	35	75	55	39,1	
x.560 Patientenzimmer	SOK	3.OG	S	45	35	75	55	39,1	
x.562 Patientenzimmer	SOK	4.OG	S	45	35	75	55	38,9	
x.366 Pflegearbeit/Aufenthalt	SOK	4.OG	S	45	35	75	55	38,8	
x.561 Patientenzimmer	SOK	4.OG	S	45	35	75	55	38,7	
2.564 Laboratorium	SOK	EG	S	45	35	75	55	38,6	
2.564.1 Denkzelle	SOK	EG	S	45	35	75	55	38,5	
x.560 Patientenzimmer	SOK	4.OG	S	45	35	75	55	38,4	
x.567 Dienstraum	SOK	4.OG	S	45	35	75	55	38,2	
2.565 Denkzelle	SOK	EG	S	45	35	75	55	38,2	
2.563 Laboratorium	SOK	EG	S	45	35	75	55	37,9	
2.562 Laboratorium	SOK	EG	S	45	35	75	55	37,3	


NMK-Gelenkbau_1.BA_E22352 Beurteilungspegel 250317_EP_TAL_Belastung Bettenbau_R9

Immissionsort	Nutzung	SW	HR	RW,T	RW,N	RW,T,max	₹W,N,max	LrT	
				dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
2.567 Laboratorium	SOK	EG	S	45	35	75	55	37,2	
2.561 Laboratorium	SOK	EG	S	45	35	75	55	36,6	
2.560 Dienstraum	SOK	EG	S	45	35	75	55	36,4	

EGS-plan GmbH Gropiusplatz 10 70563 Stuttgart ²

E22352-SIS-TAL-01

NMK Tübingen – Gelenkbau (1.BA)

Anlage VIII RechenlaufInformation Belastung CRONA

NMK-Gelenkbau 1.BA E22352 Rechenlauf-Info 250113 EP TAL Belastung CRONA R7

Projekt-Info

Projekttitel: NMK-Gelenkbau 1.BA E22352

Projekt Nr.: F22352 Projektbearbeiter: IsFi / DaWa Auftraggeber: VuB Amt Tübingen

Beschreibung:

Anpassung 17.03.2025 --> Notstromaggregate hinzugefügt

Rechenlaufbeschreibung

Rechenart: Einzelpunkt Schall

250113 EP TAL Belastung CRONA R7 Titel:

Rechenkerngruppe

RunFile.runx Laufdatei:

Ergebnisnummer: 11 Lokale Berechnung (Anzahl Threads = 12)

29.04.2025 09:40:53 Berechnungsbeginn: Berechnungsende: 29.04.2025 09:41:17 Rechenzeit: 00:07:219 [m:s:ms] 5

Anzahl Punkte:

Anzahl berechneter Punkte:

Kernel Version: SoundPLANnoise 9.0 (16.01.2024) - 64 bit

Rechenlaufparameter

Reflexionsordnung

Maximaler Reflexionsabstand zum Empfänger 200 m Maximaler Reflexionsabstand zur Quelle 50 m

Suchradius 5000 m Filter: dB(A)

Zulässige Toleranz (für einzelne Quelle): 0.100 dB Bodeneffektgebiete aus Straßenoberflächen erzeugen: Nein Straßen als geländefolgend behandeln: Nein

Richtlinien:

Gewerbe: ISO 9613-2: 1996 Luftabsorption: ISO 9613-1

regulärer Bodeneffekt (Kapitel 7.3.1), für Quellen ohne Spektrum automatisch alternativer Bodeneffekt

Begrenzung des Beugungsverlusts:

einfach/mehrfach 20,0 dB /25,0 dB

Seitenbeugung: ISO/TR 17534-3:2015 konform: keine Seitenbeugung, wenn das Gelände die Sichtverbindung unterbricht

Verwende Glg (Abar=Dz-Max(Agr,0)) statt Glg (12) (Abar=Dz-Agr) für die Einfügedämpfung

Umgebung:

Luftdruck 1013,3 mbar relative Feuchte 70,0 % 10,0 °C Temperatur

Meteo. Korr. C0(6-22h)[dB]=0,0; C0(22-6h)[dB]=0,0; Cmet für Lmax Gewerbe Berechnungen ignorieren:

NMK-Gelenkbau 1.BA E22352 Rechenlauf-Info 250113 EP TAL_Belastung CRONA_R7

Beugungsparameter: C2=20,0

Zerlegungsparameter:

Faktor Abstand / Durchmesser 8 Minimale Distanz [m] 1 m Max. Differenz Bodendämpfung + Beugung 1,0 dB

Max. Iterationszahl

Minderung

Bewuchs: ISO 9613-2 ISO 9613-2 Bebauung: Industriegelände: ISO 9613-2

TA-Lärm 1998/2017 - Werktag Bewertung:

Reflexion der "eigenen" Fassade wird unterdrückt

<u>Geometriedaten</u>

TAL_241031_Belastung CRONA.sit 29.04.2025 09:28:10

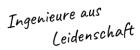
- enthält:

06_Gewerbeschallquellen_240930_LKW_Belastung CRONA.geo 29.04.2025 09:28:08 06_Gewerbeschallquellen_241009_Transporter_Belastung CRONA.geo 29.04.2025 09:28:08

06_Gewerbeschallquellen_TGA_Belastung CRONA.geo 24.04.2025 09:38:50 06_TGA_Rückkühler V2_68dB_240704_Belastung CRONA.geo

08 241009 Balkone.geo 09.10.2024 11:12:20

11 Lärmschutzwand Rückkühler.geo 25.09.2024 10:00:08 230712_DXF_Primäre Höhenlinien.geo 230725_Nachbargebäude_Belastung CRONA.geo 17.03.2025 15:29:40 25.04.2025 14:17:06 230731 Gebäude 1.BA Belastung CRONA.geo 18.03.2025 08:30:54 28.04.2025 16:23:02


RDGM0005.dgm

EGS-plan GmbH Gropiusplatz 10 70563 Stuttgart

08.01.2025 11:10:44

E22352-SIS-TAL-01

NMK Tübingen - Gelenkbau (1.BA)

Anlage IX RechenlaufInformation Belastung NMK

NMK-Gelenkbau_1.BA_E22352 Rechenlauf-Info 250113_EP_TAL_Belastung Gelenkbau_R6

Projekt-Info

Projekttitel: NMK-Gelenkbau_1.BA_E22352

Projekt Nr.: E22352
Projektbearbeiter: IsFi / DaWa
Auftraggeber: VuB Amt Tübingen

Beschreibung:

Anpassung 17.03.2025 --> Notstromaggregate hinzugefügt

Rechenlaufbeschreibung

Rechenart: Einzelpunkt Schall

Titel: 250113 EP TAL Belastung Gelenkbau R6

Rechenkerngruppe

Laufdatei: RunFile.runx

Ergebnisnummer: 10 Lokale Berechnung (Anzahl Threads = 12)

 Berechnungsbeginn:
 29.04.2025 09:40:01

 Berechnungsende:
 29.04.2025 09:40:47

 Rechenzeit:
 00:27:898 [m:s:ms]

Anzahl Punkte: 14
Anzahl berechneter Punkte: 14

Kernel Version: SoundPLANnoise 9.0 (16.01.2024) - 64 bit

Rechenlaufparameter

Reflexionsordnung

Maximaler Reflexionsabstand zum Empfänger 200 m Maximaler Reflexionsabstand zur Quelle 50 m

Suchradius 5000 m Filter: dB(A)

Zulässige Toleranz (für einzelne Quelle): 0,100 dB Bodeneffektgebiete aus Straßenoberflächen erzeugen: Nein Straßen als geländefolgend behandeln: Nein

Richtlinien:

Gewerbe: ISO 9613-2: 1996 Luftabsorption: ISO 9613-1

regulärer Bodeneffekt (Kapitel 7.3.1), für Quellen ohne Spektrum automatisch alternativer Bodeneffekt

Begrenzung des Beugungsverlusts:

einfach/mehrfach 20,0 dB /25,0 dB

Seitenbeugung: ISO/TR 17534-3:2015 konform: keine Seitenbeugung, wenn das Gelände die Sichtverbindung unterbricht

Verwende Glg (Abar=Dz-Max(Agr,0)) statt Glg (12) (Abar=Dz-Agr) für die Einfügedämpfung

Umgebung:

Luftdruck 1013,3 mbar relative Feuchte 70,0 % Temperatur 10,0 °C

Meteo. Korr. C0(6-22h)[dB]=0,0; C0(22-6h)[dB]=0,0; Cmet für Lmax Gewerbe Berechnungen ignorieren: Nein

NMK-Gelenkbau_1.BA_E22352 Rechenlauf-Info 250113_EP_TAL_Belastung Gelenkbau_R6

Beugungsparameter: C2=20,0

Zerlegungsparameter:

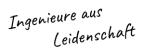
Faktor Abstand / Durchmesser 8
Minimale Distanz [m] 1 m
Max. Differenz Bodendämpfung + Beugung 1,0 dB

Max. Iterationszahl 4

Minderung

Bewuchs: ISO 9613-2 Bebauung: ISO 9613-2 Industriegelände: ISO 9613-2

Bewertung: TA-Lärm 1998/2017 - Werktag


Reflexion der "eigenen" Fassade wird unterdrückt

Geometriedaten

TAL_241031_Belastung Gelenkbau.sit	29.04.2025 09:39:54	
06 Gewerbeschallquellen Bestand.geo	29.04.2025 09:39:18	
06_TGA_Vorbelastung_Bettenbau.geo	31.10.2024 13:45:02	
08_241009_Balkone.geo		
11_Lärmschutzwand Rückkühler.geo	25.09.2024 10:00:08	
12_Sonstiges_Absorber Anlieferung_Belastung Gelenkba	au.geo	25.11.2024 15:47:20
230712_DXF_Primäre Höhenlinien.geo	17.03.2025 15:29:40	
230725_Nachbargebäude_Belastung Gelenkbau.geo	25.04.2025 11:06:22	
230731 Gebäude 1.BA Belastung Gelenkbau.geo	25.04.2025 11:06:24	
250109_lmmissionsorte_Gelenkbau_TA-Lärm.geo	29.04.2025 09:39:18	
RDGM0001.dgm 17.03.2025 15:31:34		

E22352-SIS-TAL-01

NMK Tübingen - Gelenkbau (1.BA)

Anlage X RechenlaufInformation Belastung Bettenbau

NMK-Gelenkbau_1.BA_E22352 Rechenlauf-Info 250317_GLK_TAL_Belastung Bettenbau_R8

Projekt-Info

Projekttitel: NMK-Gelenkbau_1.BA_E22352

Projekt Nr.: E22352
Projektbearbeiter: IsFi / DaWa
Auftraggeber: VuB Amt Tübingen

Beschreibung:

Anpassung 17.03.2025 --> Notstromaggregate hinzugefügt

Rechenlaufbeschreibung

Rechenart: Gebäudelärmkarte

Titel: 250317_GLK_TAL_Belastung Bettenbau_R8

Gruppe

Laufdatei: RunFile.runx

Ergebnisnummer: 12 Lokale Berechnung (Anzahl Threads = 4)

 Berechnungsbeginn:
 18.03.2025 09:02:02

 Berechnungsende:
 18.03.2025 09:02:43

 Rechenzeit:
 00:33:708 [m:s:ms]

Anzahl Punkte: 23 Anzahl berechneter Punkte: 23

Kernel Version: SoundPLANnoise 9.0 (17.01.2023) - 64 bit

Rechenlaufparameter

Reflexionsordnung

Maximaler Reflexionsabstand zum Empfänger 200 m Maximaler Reflexionsabstand zur Quelle 50 m

Suchradius 5000 m Filter: dB(A) Toleranz: 0,100 dB

Bodeneffektgebiete aus Straßenoberflächen erzeugen: Nein Straßen als geländefolgend behandeln: Nein

Richtlinien:

Gewerbe: ISO 9613-2: 1996 Luftabsorption: ISO 9613-1

regulärer Bodeneffekt (Kapitel 7.3.1), für Quellen ohne Spektrum automatisch alternativer Bodeneffekt

Begrenzung des Beugungsverlusts:

einfach/mehrfach 20,0 dB /25,0 dB

Seitenbeugung: ISO/TR 17534-3:2015 konform: keine Seitenbeugung, wenn das Gelände die Sichtverbindung unterbricht

Verwende Glg (Abar=Dz-Max(Agr,0)) statt Glg (12) (Abar=Dz-Agr) für die Einfügedämpfung

Umgebung:

Luftdruck 1013,3 mbar relative Feuchte 70,0 % Temperatur 10,0 °C

Meteo. Korr. C0(6-22h)[dB]=0,0; C0(22-6h)[dB]=0,0; Cmet für Lmax Gewerbe Berechnungen ignorieren: Nein

EGS-plan GmbH Gropiusplatz 10 70563 Stuttgart

1

NMK-Gelenkbau 1.BA E22352 Rechenlauf-Info 250317 GLK TAL Belastung Bettenbau R8

Beugungsparameter: C2=20,0

Zerlegungsparameter:

Faktor Abstand / Durchmesser 8 Minimale Distanz [m] 1 m Max. Differenz Bodendämpfung + Beugung 1,0 dB

Max. Iterationszahl

Minderung

Bewuchs: ISO 9613-2 Bebauung: ISO 9613-2 Industriegelände: ISO 9613-2

Bewertung: TA-Lärm 1998/2017 - Werktag

Gebäudelärmkarte:

Abstand zur Fassade 0,50 m Immissionsorte im Abstand von [m] 4,00 m Aufpunktabstand:

Reflexion der "eigenen" Fassade wird unterdrückt

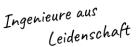
Geometriedaten

TAL 250317 Belastung Bettenbau.sit 18.03.2025 09:01:14

06_Gewerbeschallquellen_240930_LKW_Belastung CRONA.geo
06_Gewerbeschallquellen_241009_Transporter_Belastung CRONA.geo
06_Gewerbeschallquellen_TGA_Belastung CRONA.geo
06_TGA_Rückkühler V2_68dB_240704_Belastung CRONA.geo 08.01.2025 12:57:58 05.11.2024 15:39:44

08 241009 Balkone.geo 09.10.2024 11:12:20

11 Lärmschutzwand Rückkühler.geo 25.09.2024 10:00:08 230712_DXF_Primäre Höhenlinien.geo 17.03.2025 15:29:40 230725_Nachbargebäude_Belastung ČRONA.geo 17.03.2025 16:12:12 230731_Gebäude_1.BA_Belastung CRONA.geo 18.03.2025 08:30:54 250109_Immissionsorte_CRONA_TA-Lärm.geo 18.03.2025 09:01:14 250317 Gewerbeschallquellen Belastung Bettenbau.geo 18.03.2025 08:29:46


17.03.2025 15:31:34 RDGM0001.dgm

EGS-plan GmbH Gropiusplatz 10 70563 Stuttgart

08.01.2025 11:10:44

E22352-SIS-TAL-01

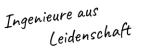
NMK Tübingen – Gelenkbau (1.BA)

Anlage XI Schallquellen Belastung CRONA

NMK-Gelenkbau_1.BA_E22352 Oktavspektren der Emittenten in dB(A) - 250113_EP_TAL_Belastung CRONA_R7

1
1

Name	Quelltyp	I oder S	Li	R'w	L'w	Lw	KI	KT	LwMax	DO-Wand	Tagesgang	Emissionsspektrum	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	16kHz
		m,m²	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB(A)	dB			dB(A)								
Anlieferung 01-Anlieferung 01	Fläche	24,96	72,0	0,0	72,0	86,0	0,0	0,0	110,0	0	Anlieferung					86,0					
Anlieferung 03-Anlieferung 03	Fläche	24,76	72,0	0,0	72,0	85,9	0,0	0,0	109,9	0	Anlieferung					85,9					
Anlieferung Ausfahrt E-LKW - Vorwärts	Linie	87,54			48,0	67,4	0,0	0,0	100,0	0	Anlieferung	E-Sattelzugmaschine	47,2	50,6	54,3	59,5	63,0	61,7	57,3	50,9	
Anlieferung Ausfahrt LKW - Vorwärts	Linie	87,54			52,5	71,9	0,0	0,0	100,0	0	Anlieferung	E-Sattelzugmaschine	51,7	55,1	58,8	64,0	67,5	66,2	61,8	55,4	
Anlieferung Einfahrt E-LKW - Rückwärts	Linie	19,61			49,2	62,1	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	34,4	50,7	49,6	57,7	55,9	55,6	47,8	42,0	34,0
Anlieferung Einfahrt E-LKW - Vorwärts	Linie	87,57			46,2	65,6	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	37,9	54,2	53,1	61,2	59,4	59,1	51,3	45,5	37,5
Anlieferung Einfahrt LKW - Rückwärts	Linie	19,61			54,1	67,0	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	39,3	55,6	54,5	62,6	60,8	60,5	52,7	46,9	38,9
Anlieferung Einfahrt LKW - Vorwärts	Linie	87,57			51,1	70,5	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	42,8	59,1	58,0	66,1	64,3	64,0	56,2	50,4	42,4
Anlieferung Transporter 01 - Zufahrt	Linie	88,04			58,0	77,4	0,0	0,0	100,0	0	Anlieferung					77,4					
Anlieferung Transporter 02 - Abfahrt	Linie	87,19			58,0	77,4	0,0	0,0	100,0	0	Anlieferung					77,4					
Industriehalle, Raum4-Außenluftansaugung	Fläche	27,19			53,7	68,0	0,0	0,0		0	100%/24h					68,0					
TGA Fortluft	Punkt				54,0	54,0	0,0	0,0		0	100%/24h					54,0					
TGA Fortluft	Punkt				54,0	54,0	0,0	0,0		0	100%/24h					54,0					
TGA Fortluft	Punkt				54,0	54,0	0,0	0,0		0	100%/24h					54,0					
TGA Fortluft	Punkt				53,0	53,0	0,0	0,0		0	100%/24h					53,0					
TGA Fortluft	Punkt				53,0	53,0	0,0	0,0		0	100%/24h					53,0					
TGA Fortluft	Punkt				53,0	53,0	0,0	0,0		0	100%/24h					53,0					
TGA Fortluft	Punkt				54,0	54,0	0,0	0,0		0	100%/24h					54,0					
TGA Fortluft	Punkt				53,0	53,0	0,0	0,0		0	100%/24h					53,0					
TGA Fortluft	Punkt				53,0	53,0	0,0	0,0		0	100%/24h					53,0					
TGA Rückkühler 3 (Backup)	Punkt				0,0	0,0	0,0	0,0		0	100%/24h					0,0					
TGA Rückkühler 4	Punkt	İ	İ	İ	68,0	68,0	0,0	0,0		0	100%/24h					68,0					


NMK-Gelenkbau_1.BA_E22352 Oktavspektren der Emittenten in dB(A) - 250113_EP_TAL_Belastung CRONA_R7

1
•

Name	Quelltyp	I oder S	Li	R'w	L'w	Lw	KI	КТ	LwMax	DO-Wand	Tagesgang	Emissionsspektrum	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	16kHz
		m,m²	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB(A)	dB			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
TGA V2 Rückkühler 1	Punkt				68,0	68,0	0,0	0,0		0	100%/24h					68,0					
TGA V2 Rückkühler 2	Punkt				68,0	68,0	0,0	0,0		0	100%/24h					68,0					
TGA Zuluft	Punkt				60,0	60,0	0,0	0,0		0	100%/24h					60,0					

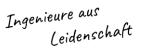
E22352-SIS-TAL-01

NMK Tübingen – Gelenkbau (1.BA)

Anlage XII Schallquellen Belastung CRONA

NMK-Gelenkbau_1.BA_E22352 Oktavspektren der Emittenten in dB(A) - 250113_EP_TAL_Belastung Gelenkbau_R6

Name	Quelltyp	I oder S	Li	R'w	L'w	Lw	KI	KT	LwMax	DO-Wand	Tagesgang	Emissionsspektrum	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	16kHz
		m,m²	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB(A)	dB			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Anlieferung CRONA - Ausahrt E-LKW - Vorwärts	Linie	146,51			41,1	62,8	0,0	0,0	100,0	0	Anlieferung					62,8					
Anlieferung CRONA - Ausfahrt LKW - Vorwärts	1	144,80			55,4	77,0	0,0	0,0	100,0	0	Anlieferung					77,0					
Anlieferung CRONA - Ausfahrt Transporter	Linie	121,56			48,0	68,8	0,0	0,0	100,0	0	Anlieferung					68,8					
Anlieferung CRONA - Einfahrt E-LKW - Rückwärts	Linie	47,33			44,1	60,9	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	33,1	49,4	48,3	56,4	54,6	54,3	46,5	40,7	32,7
Anlieferung CRONA - Einfahrt E-LKW - Vorwärts	Linie	71,49			41,1	59,6	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	31,9	48,2	47,1	55,2	53,4	53,1	45,3	39,5	31,5
LKW - Rückwarts	Linie	47,47			57,0	73,8	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	46,0	62,3	61,3	69,4	67,5	67,2	59,5	53,6	45,6
Anlieferung CRONA - Einfahrt LKW - Rückwärts	Linie	47,47			57,0	73,8	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	46,0	62,3	61,3	69,4	67,5	67,2	59,5	53,6	45,6
Anlieferung CRONA - Einfahrt LKW - Vorwärts	Linie	71,49			54,0	72,5	0,0	0,0	100,0	0	Anlieferung	Sattelzugmaschine	44,8	61,1	60,0	68,1	66,3	66,0	58,2	52,4	44,4
Anlieferung CRONA - Einfahrt Transporter - Rückwärts	Linie	47,99			51,0	67,8	0,0	0,0	100,0	0	Anlieferung					67,8					
Anlieferung CRONA - Einfahrt Transporter - Vorwärts	Linie	64,35			48,0	66,1	0,0	0,0	100,0	0	Anlieferung					66,1					
Anlieferung CRONA - Einzelgeräusche LKW	Punkt				84,3	84,3	0,0	0,0	102,0	0	Anlieferung					84,3					
Anlieferung CRONA - Einzelgeräusche Transporter	Punkt				82,2	82,2	0,0	0,0	100,0	0	Anlieferung					82,2					
Anlieferung CRONA - Entladevorgänge LKW	Punkt				67,9	67,9	0,0	0,0	102,0	0	Anlieferung					67,9					
Anlieferung CRONA - Entladevorgänge Transporter	Punkt				63,0	63,0	0,0	0,0	102,0	0	Anlieferung					63,0					
Anlieferung CRONA - Ladebordwand	Punkt				90,7	90,7	0,0	0,0	114,0	0	Anlieferung					90,7					
Anlieferung CRONA - PKW	Linie	43,62			64,9	81,3		0,0	100,0	0	Anlieferung					81,3					
CRONA Papierpresse	Punkt				67,2	67,2	0,0	0,0	85,0	0	Anlieferung					67,2					


NMK-Gelenkbau_1.BA_E22352 Oktavspektren der Emittenten in dB(A) - 250113_EP_TAL_Belastung Gelenkbau_R6

•	1		
4	,	1	
4	1	_	

Name	Quelltyp	I oder S	Li	R'w	L'w	Lw	KI	KT	LwMax	DO-Wand	Tagesgang	Emissionsspektrum	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	16kHz
		m,m²	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB(A)	dB			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
CRONA Schrott elektro	Punkt				70,2	70,2	0,0	0,0	95,0	0	Anlieferung					70,2					
CRONA Schrott Gemischt	Punkt				80,2	80,2	0,0	0,0	85,0	0	Anlieferung					80,2					
CRONA Schrott Holz	Punkt				70,2	70,2	0,0	0,0	95,0	0	Anlieferung					70,2					
CRONA Schrott Metall	Punkt				80,2	80,2	0,0	0,0	105,0	0	Anlieferung					80,2					
TGA Rückkühler Bettenbau 1	Punkt				82,0	82,0	0,0	0,0		0	100%/24h					82,0					
TGA Rückkühler Bettenbau 2	Punkt				82,0	82,0	0,0	0,0		0	100%/24h					82,0					

E22352-SIS-TAL-01

NMK Tübingen – Gelenkbau (1.BA)

Anlage XIII Schallquellen Belastung Bettenbau

NMK-Gelenkbau_1.BA_E22352 Stundenwerte der Schallleistungspegel in dB(A) - 250317_GLK_TAL_Belastung Bettenbau_R8

Name	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-24
	Uhr																							
	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Anlieferung 01 - Rückwärts							68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6		
Anlieferung 01 - Vorwärts							62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1		
Anlieferung 01 - Vorwärts							62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1		
Anlieferung 01-Anlieferung 01							59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0		
Anlieferung 02 - Rückwärts							68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6	68,6		
Anlieferung 02 - Vorwärts							62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1		
Anlieferung 02 - Vorwärts							62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1	62,1		
Anlieferung 03-Anlieferung 03							59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0	59,0		
Anlieferung Transporter 01 - Zufahrt						ĺ	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0		
Anlieferung Transporter 02 - Abfahrt							65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0	65,0		
Industriehalle, Raum4-Außenluftansaugung	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0
Industriehalle, Raum4-Flächenschallquelle 01								76,1										ĺ		ĺ				
Industriehalle, Raum4-Flächenschallquelle 02								70,6												ĺ				
Industriehalle, Raum4-Flächenschallquelle 03								85,1										ĺ		ĺ				
TGA Fortluft	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
TGA Fortluft	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
TGA Fortluft	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0
TGA Fortluft	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
TGA Fortluft	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0
TGA Fortluft	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0
TGA Fortluft	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0
TGA Fortluft	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0	53,0
TGA Fortluft	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
TGA Rückkühler 3 (Backup)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
TGA Rückkühler 4	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0
TGA V2 Rückkühler 1	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0
TGA V2 Rückkühler 2	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0	68,0
TGA Zuluft	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0