

Erschließung Neue Medizinische Klinik (NMK)

Entwässerungskonzeption

Erläuterungen und Berechnungen

Aufgestellt:

Pfullingen, 24.06.2025

REIK Ingenieurgesellschaft mbH Wörthstraße 93 Tel.,07121/9266-0, Fax 9266-33 72793 PFULUINGEN

Reik Ingenieurgesellschaft mbH

Wörthstraße 93 72793 Pfullingen

0. <u>Inhaltsverzeichnis</u>

0.	Inhaltsverzeichnis	2
1.	Anlagenverzeichnis	3
2.	Bestandssituation	4
3.	Planungssituation	5

1. Anlagenverzeichnis

Anlage 1	Lageplan Einzugsgebiete Bestand	M 1 : 500
Anlage 2	Lageplan "Kanalbestand"	M 1 : 500
Anlage 3	Lageplan Flächenermittlung Bestand	M 1 : 500
Anlage 4	Kostra-Regendaten / Niederschlagsspenden	
Anlage 5	E-Mail der Stadt Tübingen zum HRB-Volumen	
Anlage 6	Koordinierter Leitungsplan 3.BA + 4.BA Schnarrenberg	M 1 : 250
Anlage 7	Berechnung Regenwasseranfall Gebäude (HLSK-Planun	g)
Anlage 8	Berechnung Schmutzwasseranfall Gebäude (HLSK-Plan	ung)
Anlage 9	Längenschnitt Regenwasserkanal	M 1 : 250 / 25
Anlage 10	Längenschnitt Schmutzwasserkanal	M 1 : 250 / 25
Anlage 11	Regelquerschnitte Infrastruktur/Straßenbau	M 1 : 50

Hinweis

Die o.g. Planunterlagen sind für den digitalen Austausch bzw. die Betrachtung am Bildschirm ausgelegt. Mitunter sind die Blattgrößen im entsprechenden Maßstab so groß, dass ein Ausdruck nur ausschnittsweise oder verkleinert erfolgen kann.

2. Bestandssituation

Das anfallende Regenwasser im Klinikumsgelände "Schnarrenberg" wird derzeit an vier Stellen in die Vorflut bzw. das öffentliche Kanalnetz eingeleitet. Die Lage dieser Einleitstellen kann dem beiliegendem Lageplan (Anlage 1 – LP EZG-Bestand) entnommen werden. Es handelt sich um folgende Einleitstellen:

- 1. Einleitstelle "Nord" über das Regenklärbecken "Schnarrenberg"
- 2. Einleitstelle "Süd" über die Straße "Breiter Weg"
- 3. Einleitstelle "Rosenauer Weg" in den Kanal im Rosenauer Weg
- 4. Einleitstelle "HRB" in das Hochwasserrückhaltebecken

In den nachfolgenden Erläuterungen und Berechnungen spielen die beiden ersten Einleitstellen eine untergeordnete Rolle, da vorrangig die Entwässerungssituation im Südwesten betrachtet werden soll.

Die Bestandsgebäude "Ob der Grafenhalde" Nr. 2 bis 12 entwässern in den Bestandskanal in der Grafenhalde. Da die Zukunft dieser Gebäude bislang noch nicht final geklärt ist, bleiben sie in nachfolgenden Betrachtungen unberücksichtigt.

Die Bestandsgebäude "Ottfried-Müller-Straße" Nr. 43 – 51 sind ebenfalls an den Kanal in der Grafenhalde angeschlossen. (Anlage 2 – LP Kanalbestand). Diese Gebäude werden abgebrochen, so dass künftig hier kein Abwasser mehr anfällt. Die entfallende Menge wird bei den Berechnungen vernachlässigt und stellt demnach einen "zusätzlichen Puffer" dar.

Die Verkehrsfläche, die sich im Westen zwischen der Böschungsoberkante (Waldrand) und den Bestandsgebäuden "Crona" befindet entwässert in einen Abwasserkanal DN 300, der im weiteren Verlauf unter der Mulde am Böschungsfuß der Grafenhalde verläuft und im Südosten im Bereich der Wendeplatte (Ob der Grafenhalde Geb. 19) an den Mischwasserkanal angeschlossen ist. Der Kanalverlauf und -zustand "unter der Mulde" ist unklar und sollte zeitnah geprüft werden.

Die Fläche der o.g. Westspange beträgt ca. 3.000 m². (Anlage 3 – Flächenermittlung Bestand)

Gemäß Abstimmung mit den betreffenden Beteiligten wird für die Regenwasserbetrachtung ein 15 minütiges, 5-jährliches Regenereignis mit $r_{15,5}$ = 176,7 l/s*ha angesetzt. (Anlage 4 – KOSTRA-DWD 2020)

Demzufolge beträgt der Oberflächenzufluss aus den westlichen Verkehrsflächen 3.000 m² * 176,7 l/s*ha = 53 l/s

Auf die Ermittlung des Oberflächenwasserzuflusses in den Graben "Grafenhalde" wird hier verzichtet, da diese Fläche künftig reduziert wird und dementsprechend weniger Regenwasser eingeleitet wird.

3. Planungssituation

Im gesamten Klinikumsgelände gibt es zahlreiche geplante Baumaßnahmen, die in einer sog. Masterplanung fixiert sind.

Ähnlich wie im Bestand, begrenzen sich die nachfolgenden Erläuterungen jedoch ausschließlich auf den südwestlichen Teil (Neubau Medizinische Klinik kurz NMK 1. Und 2. BA) sowie die geplante westliche Zufahrtsstraße.

Am westlichen Rand des Klinikumsbereiches existiert ein Hochwasserrückhaltebecken, welches sich im Eigentum der Stadt Tübingen befindet und nach deren Angaben auch ausreichend dimensioniert ist (Anlage 5 – Mail von Frau Hummel).

Aus diesem Grund ist geplant, so viel Regenwasser wie möglich über dieses Becken abzuleiten um damit andere städtische Entwässerungseinrichtungen (z.B. den Kanal im Rosenauer Weg) zu entlasten.

Demzufolge wird sämtliches anfallendes Regenwasser aus dem Neubau NMK 1.BA und NMK 2.BA sowie das Oberflächenwasser der westlichen Verkehrsflächen über neue Regenwasserkanäle in dieses Becken geleitet (Anlage 6 – KLP 3.+4.BA)

Die Regenwassermengen, die in das Becken eingeleitet werden, lassen sich wie folgt zusammenfasen:

1.BA NMK mit $r_{5,5}$ = 300 l/s*ha und 20% Sicherheit (Anlage 7 – Berechnungen PGMM) $Q_{1.BA}$ = 180,79 l/s, wobei der westliche Anschluss über eine Zisterne geleitet wird.

2.BA NMK ansatzweise auf Grund fehlender Planungsreife mit ca. 1/3 der Wassermenge $Q_{2,BA} = 60 \text{ l/s}$

Die Gesamtmenge beträgt 240 l/s. Der geplante RW-Kanal DN 500 hat bei einem Sohlgefälle von ca. 15 ‰ eine Leistungsfähigkeit von ca. 460 l/s und kann demnach das anfallende Oberflächenwasser schadlos ableiten.

Das Regenwasser der westlichen Verkehrsflächen wird ebenfalls über einen RW-Kanal dem HRB "Zwehrenbühl" zugeführt. Die entsprechende Wassermenge beträgt:

 $3.000 \text{ m}^2 \text{ x } 176.7 \text{ l/s*ha} = 53 \text{ l/s}.$

Der geplante RW-Kanal DN 300 hat bei einem Sohlgefälle von ca. 15 ‰ eine Leistungsfähigkeit von ca. 120 l/s und kann demnach das anfallende Oberflächenwasser schadlos ableiten.

Das Regenwasser aus den westlichen Verkehrsflächen wird über einen Lamellenklärer im Dauerstau gereinigt bevor es in das HRB geleitet wird. Dadurch wird nur sauberes oder geklärtes Oberflächenwasser dem HRB zugeleitet.

Der Kanal, der das Regenwasser in das Hochwasserrückhaltebecken ableitet verläuft durch einen Wald und muss deswegen in geschlossener Bauweise hergestellt werden. Auf Grund der topographischen und geologischen Bedingungen eignet sich hierfür ein Rohrvortriebsverfahren. Das Medienrohr muss, bedingt durch technische Vorgaben und Notwendigkeiten, einen Mindestdurchmesser von 1000 mm haben. Die abzuleitende Wassermenge führt daher in diesem Rohr zu keiner Vollfüllung. Der Auslauf in das Becken wird als "Raue Rampe" mit Flussbausteinen so gestaltet, dass durch die Störsteine, die in Beton versetzt werden, die Energie umgewandelt und das Regenwasser dem Beckengrundablass schadlos zugeleitet werden kann.

Die Andienung der "Beckenbaustelle" erfolgt über eine temporär herzustellende Baustellenzufahrt parallel zum bestehenden Treppenaufgang.

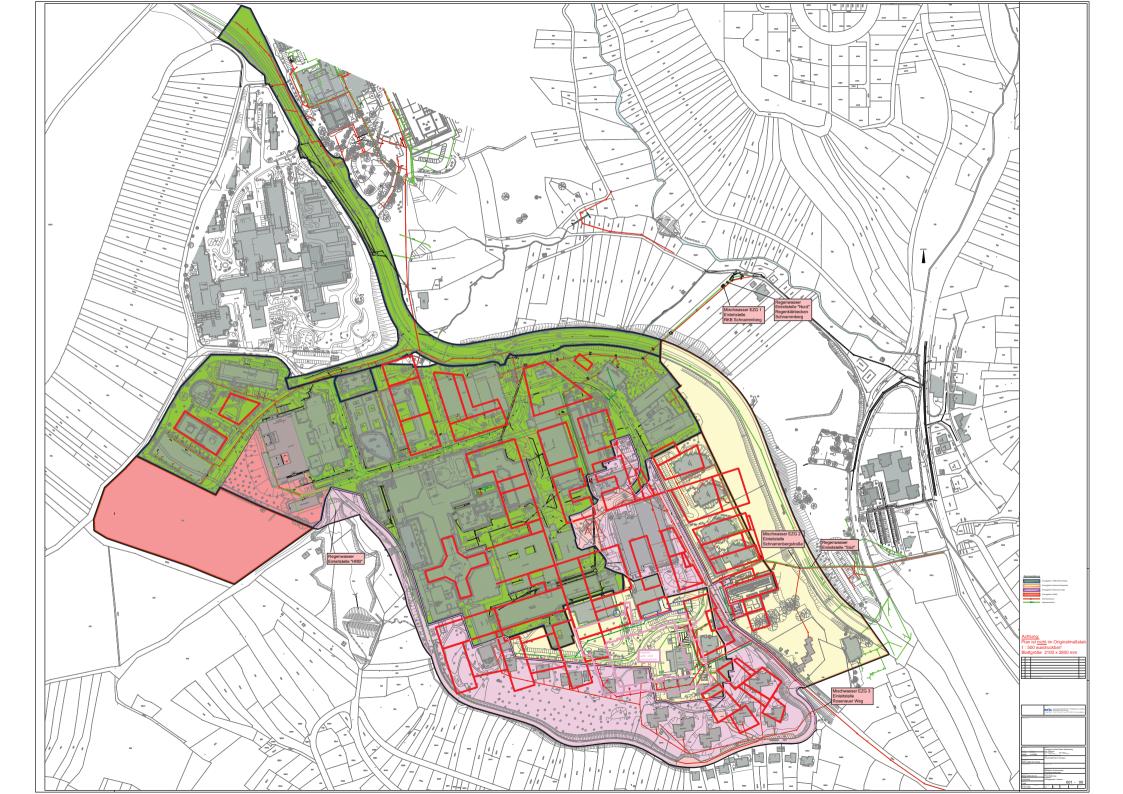
Die Notentwässerung der Neubauten erfolgt über ein separates Rohrsystem, welches für jeden Zulauf einen "eigenen" Auslauf erhält. Für den Neubau NMK 1.BA befinden sich an der Ostseite zwei Ausläufe und an der Westseite ein Auslauf.

Die Notwassermengen wurden mit einem 5 minütigen, 100-jährlichen Regenereignis $r_{5,100} = 556,7$ l/s*ha berechnet und betragen in Summe 539,39 l/s.

Sollte ein solches Regenereignis eintreffen und die Notentwässerung der Gebäude "anspringen", dann wird das Wasser über einen freien Auslauf ins Gelände geleitet. Die jeweiligen Ausläufe im Böschungsbereich werden mit Pflasterkranz und Störsteinen entsprechend ausgebildet so dass hier kein Schaden entstehen kann.

Die bestehende Mulde am Böschungsfuß der Grafenhalde ist derzeit nicht überall "funktionsfähig". Im Rahmen der geplanten Baumaßnahmen wird diese Mulde insoweit ertüchtigt bzw. neu profiliert, dass anfallendes Regenwasser abgeleitet werden kann. In Abstimmung mit der Stadt Tübingen ist mglw. auch das Einlaufbauwerk im Bereich der Wendeplatte zu erneuern.

Die Schmutzwasserableitung der geplanten Neubauten NMK 1.und 2.BA erfolgt über einen neuen Schmutzwasserkanal, der in der Grafenhalde verlegt wird und im Bereich der Wendeplatte (Ob der Grafenhalde Geb. 19) an den bestehenden Mischwasserkanal angeschlossen wird.


Die gesamten Schmutzwassermengen betragen für den 1.BA in Summe 50,39 l/s (Anlage 8 – Berechnungen PGMM).

Ähnlich wie für die Berechnung der Regenwassermenge wird für das Konzept überschlägig der Schmutzwasseranfall wie folgt abgeschätzt:

Menge 2.BA \sim 1/3 der Menge 1.BA \sim 17 l/s.

Die Gesamtmenge beträgt somit 68 l/s. Der geplante SW-Kanal DN 300 hat bei einem Sohlgefälle von mind. 8,0 ‰ eine Leistungsfähigkeit von ca. 90 l/s und kann demnach das anfallende Schmutzwasser schadlos ableiten.

Die Differenz zu der im Bestand eingeleiteten Wassermenge in Höhe von ca. 53 l/s wird durch den bereits erwähnten Wegfall der Schmutzwassermengen der Abbruchgebäude in der Ottfried-Müller-Straße kompensiert. Zudem ist eine Schmutzwassermenge in Höhe von 68 l/s aus unserer Sicht eher ein "Rechenwert", der in der Praxis vermutlich selten auftritt.

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagshöhen nach **KOSTRA-DWD 2020**

Rasterfeld : Spalte 130, Zeile 195

Ortsname : Tübingen (BW)

Bemerkung

Dauerstufe D			Nied	derschlagshöhen	hN [mm] je Wie	derkehrintervall ⁻	Г [а]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	5,8	7,1	7,9	9,0	10,6	12,2	13,3	14,7	16,7
10 min	8,4	10,4	11,6	13,2	15,5	17,9	19,5	21,5	24,4
15 min	10,2	12,5	14,0	15,9	18,7	21,5	23,4	25,9	29,4
20 min	11,4	14,1	15,7	17,9	21,0	24,2	26,3	29,1	33,1
30 min	13,2	16,3	18,3	20,8	24,4	28,1	30,6	33,8	38,4
45 min	15,2	18,7	20,9	23,8	27,9	32,2	35,0	38,6	43,9
60 min	16,6	20,4	22,8	26,0	30,5	35,2	38,2	42,2	48,0
90 min	18,6	23,0	25,7	29,2	34,3	39,6	43,0	47,5	54,0
2 h	20,2	24,9	27,8	31,7	37,2	42,9	46,6	51,5	58,5
3 h	22,5	27,8	31,0	35,3	41,5	47,8	52,0	57,4	65,2
4 h	24,3	30,0	33,5	38,1	44,7	51,6	56,1	61,9	70,4
6 h	27,0	33,3	37,2	42,3	49,6	57,3	62,2	68,8	78,1
9 h	29,9	36,9	41,2	46,9	55,0	63,5	69,0	76,2	86,6
12 h	32,1	39,6	44,3	50,4	59,1	68,2	74,1	81,9	93,0
18 h	35,6	43,8	49,0	55,7	65,4	75,5	82,0	90,6	103,0
24 h	38,2	47,1	52,6	59,9	70,3	81,1	88,1	97,3	110,6
48 h	45,3	55,9	62,5	71,1	83,4	96,2	104,6	115,6	131,3
72 h	50,1	61,8	69,0	78,5	92,2	106,3	115,6	127,7	145,1
4 d	53,8	66,3	74,1	84,3	99,0	114,2	124,1	137,1	155,7
5 d	56,8	70,1	78,3	89,0	104,6	120,6	131,1	144,8	164,5
6 d	59,4	73,3	81,9	93,1	109,4	126,1	137,1	151,5	172,1
7 d	61,7	76,1	85,0	96,7	113,6	131,0	142,4	157,3	178,7

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen D

Niederschlagshöhe in [mm] hN

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2020**

Rasterfeld : Spalte 130, Zeile 195 Ortsname : Tübingen (BW)

Bemerkung

Dauerstufe D	Dauerstufe D Niederschlagspenden rN [I/(s·ha)] je Wiederkehrintervall T [a]								
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	193,3	236,7	263,3	300,0	353,3	406,7	443,3	490,0	556,7
10 min	140,0	173,3	193,3	220,0	258,3	298,3	325,0	358,3	406,7
15 min	113,3	138,9	155,6	176,7	207,8	238,9	260,0	287,8	326,7
20 min	95,0	117,5	130,8	149,2	175,0	201,7	219,2	242,5	275,8
30 min	73,3	90,6	101,7	115,6	135,6	156,1	170,0	187,8	213,3
45 min	56,3	69,3	77,4	88,1	103,3	119,3	129,6	143,0	162,6
60 min	46,1	56,7	63,3	72,2	84,7	97,8	106,1	117,2	133,3
90 min	34,4	42,6	47,6	54,1	63,5	73,3	79,6	88,0	100,0
2 h	28,1	34,6	38,6	44,0	51,7	59,6	64,7	71,5	81,3
3 h	20,8	25,7	28,7	32,7	38,4	44,3	48,1	53,1	60,4
4 h	16,9	20,8	23,3	26,5	31,0	35,8	39,0	43,0	48,9
6 h	12,5	15,4	17,2	19,6	23,0	26,5	28,8	31,9	36,2
9 h	9,2	11,4	12,7	14,5	17,0	19,6	21,3	23,5	26,7
12 h	7,4	9,2	10,3	11,7	13,7	15,8	17,2	19,0	21,5
18 h	5,5	6,8	7,6	8,6	10,1	11,7	12,7	14,0	15,9
24 h	4,4	5,5	6,1	6,9	8,1	9,4	10,2	11,3	12,8
48 h	2,6	3,2	3,6	4,1	4,8	5,6	6,1	6,7	7,6
72 h	1,9	2,4	2,7	3,0	3,6	4,1	4,5	4,9	5,6
4 d	1,6	1,9	2,1	2,4	2,9	3,3	3,6	4,0	4,5
5 d	1,3	1,6	1,8	2,1	2,4	2,8	3,0	3,4	3,8
6 d	1,1	1,4	1,6	1,8	2,1	2,4	2,6	2,9	3,3
7 d	1,0	1,3	1,4	1,6	1,9	2,2	2,4	2,6	3,0

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen D

rN Niederschlagsspende in [l/(s·ha)]

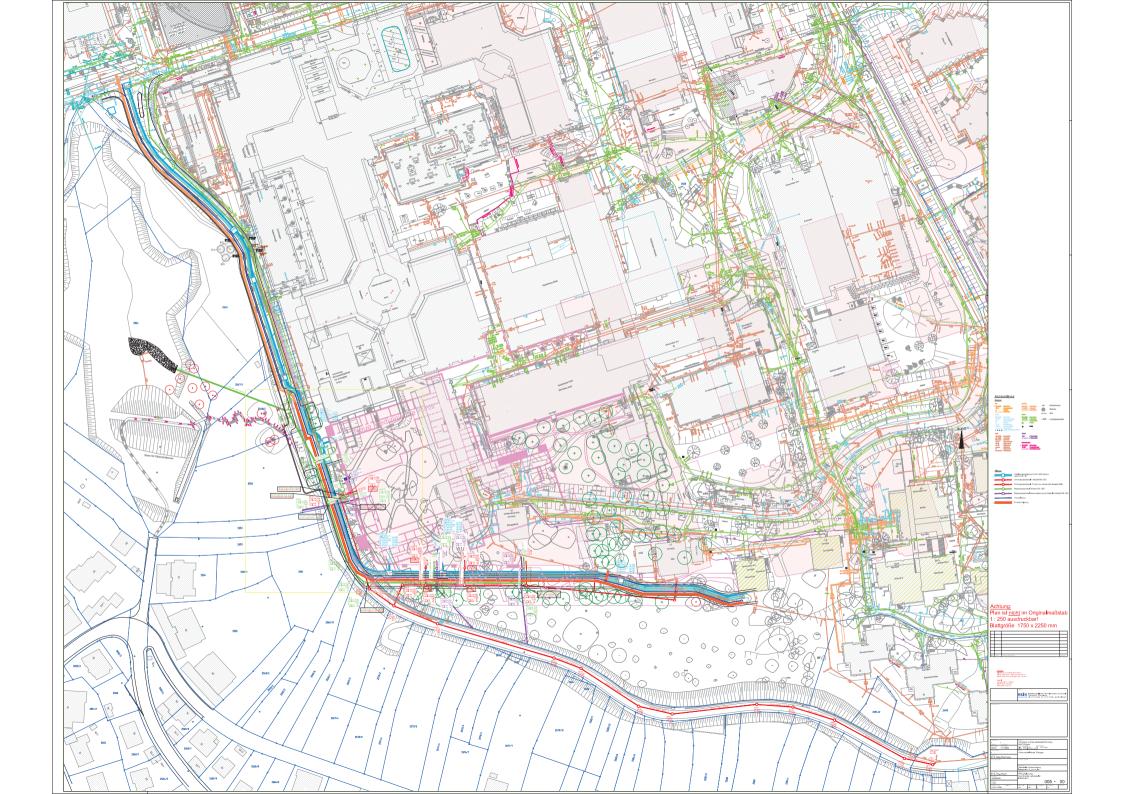
KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Toleranzwerte der Niederschlagshöhen und -spenden nach KOSTRA-DWD 2020

Rasterfeld : Spalte 130, Zeile 195 Ortsname : Tübingen (BW)

Bemerkung


Dauerstufe D Toleranzwerte UC je Wiederkehrintervall T [a] in [±%]									
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	14	13	13	13	14	14	14	14	15
10 min	14	15	15	16	16	17	17	18	18
15 min	16	17	17	18	19	19	20	20	21
20 min	17	18	19	19	20	21	21	22	22
30 min	18	19	20	21	22	22	23	23	23
45 min	19	20	21	21	22	23	23	24	24
60 min	19	20	21	22	23	23	24	24	24
90 min	18	20	21	21	22	23	23	24	24
2 h	18	20	20	21	22	23	23	23	24
3 h	17	19	19	20	21	22	22	23	23
4 h	17	18	19	20	20	21	21	22	22
6 h	16	17	18	19	19	20	20	21	21
9 h	15	16	17	18	19	19	20	20	20
12 h	15	16	17	17	18	19	19	19	20
18 h	15	16	16	17	17	18	18	19	19
24 h	15	15	16	16	17	18	18	18	19
48 h	15	16	16	16	17	17	17	18	18
72 h	16	16	16	17	17	17	18	18	18
4 d	17	17	17	17	17	18	18	18	18
5 d	18	17	18	18	18	18	18	18	19
6 d	18	18	18	18	18	18	19	19	19
7 d	19	19	18	19	19	19	19	19	19

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen D

UC Toleranzwert der Niederschlagshöhe und -spende in [±%]

Projektnummer: 0004211920100999 Projektbezeichnung: NMK-Gelenkbau

PGMM Hilfsmittel LP02 KG410 Version: 3.0

10.06.2025

Berechnung Regenentwässerung Dachentwässerung

Gebäude/Bauteil Gelenkbau 1.BA

Dachfläche 1Dach E07BearbeiterPG384

1. Berechnungsformeln

Regenwasserabfluss $Q_r = A^*C^*r_{(D,T)}/10000$

Regenwasserabfluss über Notentwässerung QNot = (r(5,100) - r(D,T) x C) x A/10000

2. Auslegungsdaten

 Dach- / Freifläche A
 6040 [m²]

 Abflussbeiwert C
 0,5

 Regenspende r(5,5)
 300 [l/(s*ha)]

 Regenspende r(5,100)
 556,7 [l/(s*ha)]

besonders schützenwertes Gebäude?

3. Ermittlung des Regenwasserabflusses

Regenwasserabfluss Dachfläche Qr (mit 20% sicherheit) 108,72 [l/s]

Mindestabflussvermögen Notentwässerung **Qnot** 336,25 [l/s]

Dachfläche 2	Dach E04 Norden	
1. Berechnungsformeln		
Regenwasserabfluss	$Q_r = A^*C^*r_{(D,T)}/100$	000
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T)) \times (0,T)$	C) x A/10000
2. Auslegungsdaten		
Dach- / Freifläche A Abflussbeiwert C Regenspende r(5,5) Regenspende r(5,100) besonders schützenwertes Gebäude?		884 [m²] 0,5 300 [l/(s*ha)] 556,7 [l/(s*ha)] Ja
3. Ermittlung des Regenwasserabfluss	es	
Regenwasserabfluss Dachfläche Qr (mit 20% sich	nerheit)	15,91 [l/s]
Mindestabflussvermögen Notentwässerung Qnot		49,21 [l/s]

Dachfläche 3	Dach E04 Süden	
1. Berechnungsformeln		
Regenwasserabfluss	$Q_r = A^*C^*r_{(D,T)}/10$	0000
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T))$	x C) x A/10000
2. Auslegungsdaten		
Dach- / Freifläche A Abflussbeiwert C Regenspende r(5,5) Regenspende r(5,100) besonders schützenwertes Gebäude?		666 [m²] 0,5 300 [l/(s*ha)] 556,7 [l/(s*ha)] Ja
3. Ermittlung des Regenwasserabfluss	es	
Regenwasserabfluss Dachfläche Qr (mit 20% sich	nerheit)	11,99 [l/s]
Mindestabflussvermögen Notentwässerung Qnot		37,08 [l/s]

PGMM Hilfsmittel LP02 KG410 Version: 3.0

10.06.2025

Dachfläche 4	Lichthof E04	
1. Berechnungsformeln		
Regenwasserabfluss	$\mathbf{Q}_{\mathbf{r}} = \mathbf{A}^* \mathbf{C}^* \mathbf{r}_{(\mathbf{D}, \mathbf{T})} / 1$	10000
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T))$	x C) x A/10000
2. Auslegungsdaten Dach- / Freifläche A		125 [m²]
Abflussbeiwert C Regenspende r(5,5) Regenspende r(5,100) besonders schützenwertes Gebäude?		0,5 300 [l/(s*ha)] 556,7 [l/(s*ha)] Ja
3. Ermittlung des Regenwasserabfluss	es	
Regenwasserabfluss Dachfläche Qr		1,88 [l/s]
Mindestabflussvermögen Notentwässerung Qnot		6,96 [l/s]

Dachfläche 5 Log	gia e06-05-04
1. Berechnungsformeln	
Regenwasserabfluss	$Q_r = A^*C^*r_{(D,T)}/10000$
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T) \times C) \times A/10000$
2. Auslegungsdaten	
Dach- / Freifläche A	270 [m²]
Abflussbeiwert C	0,5
Regenspende r(5,5)	300 [l/(s*ha)]
3. Ermittlung des Regenwasserabflusses	
Regenwasserabfluss Dachfläche Qr	4,05 [l/s]

Dach E03	
$\mathbf{Q}_{r} = \mathbf{A}^* \mathbf{C}^* \mathbf{r}_{(D,T)} \mathbf{r}^{r}$	10000
QNot = $(r(5,100) - r(D,T)$	x C) x A/10000
	1020 [m²] 0,5 300 [l/(s*ha)] 556,7 [l/(s*ha)] Ja
ses	
	15,30 [l/s] 56,78 [l/s]
	Q _r =A*C*r _(D,T) /' QNot = (r(5,100) - r(D,T)

LP02 KG410 Version: 3.0

Dachfläche 7	ichthof E03	
1. Berechnungsformeln		
Regenwasserabfluss	$Q_r = A^*C^*r_{(D,T)}/$	10000
Regenwasserabfluss über Notentwässerung	QNot = (r(5,100) - r(D,T)	x C) x A/10000
2. Auslegungsdaten		
Dach- / Freifläche A		33 [m²]
Abflussbeiwert C		0,5
Regenspende r(5,5)		300 [l/(s*ha)]
Regenspende r(5,100)		556,7 [l/(s*ha)]
besonders schützenwertes Gebäude?		Ja
3. Ermittlung des Regenwasserabflusses		
Regenwasserabfluss Dachfläche Qr		0,50 [l/s]
Mindestabflussvermögen Notentwässerung Qnot		1,84 [l/s]

Dachfläche 8	Lichthof E03	
1. Berechnungsformeln		
Regenwasserabfluss	$\mathbf{Q}_{\mathbf{r}} = \mathbf{A}^* \mathbf{C}^* \mathbf{r}_{(\mathbf{D},\mathbf{T})} / \mathbf{C}^* $	10000
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T))$	x C) x A/10000
2. Auslegungsdaten		
Dach- / Freifläche A Abflussbeiwert C Regenspende r(5,5) Regenspende r(5,100) besonders schützenwertes Gebäude?		39 [m²] 0,5 300 [l/(s*ha)] 556,7 [l/(s*ha)] Ja
3. Ermittlung des Regenwasserabfluss	ses	
Regenwasserabfluss Dachfläche Qr		0,59 [l/s]
Mindestabflussvermögen Notentwässerung Qnot	t	2,17 [l/s]

 $Q_r = A^*C^*r_{(D,T)}/10000$

Dachfläche 9 Dach E02

1. Berechnungsformeln

Regenwasserabfluss über Notentwässerung QNot = (r(5,100) - r(D,T) x C) x A/10000

2. Auslegungsdaten

Regenwasserabfluss

 Dach- / Freifläche A
 450 [m²]

 Abflussbeiwert C
 0,5

 Regenspende r(5,5)
 300 [l/(s*ha)]

 Regenspende r(5,100)
 556,7 [l/(s*ha)]

besonders schützenwertes Gebäude?

3. Ermittlung des Regenwasserabflusses

Regenwasserabfluss Dachfläche **Qr** 6,75 [l/s]

Mindestabflussvermögen Notentwässerung Qnot 25,05 [l/s]

Dachfläche 10 Lichthof E02

1. Berechnungsformeln

Regenwasserabfluss $Q_r = A^*C^*r_{(D,T)}/10000$

Regenwasserabfluss über Notentwässerung QNot = (r(5,100) - r(D,T) x C) x A/10000

2. Auslegungsdaten

 Dach- / Freifläche A
 63 [m²]

 Abflussbeiwert C
 0,5

 Regenspende r(5,5)
 300 [l/(s*ha)]

Regenspende **r(5,5)**Regenspende **r(5,100)**556,7 [l/(s*ha)]

besonders schützenwertes Gebäude? Ja

3. Ermittlung des Regenwasserabflusses

Regenwasserabfluss Dachfläche **Qr** 0,95 [l/s]

Mindestabflussvermögen Notentwässerung **Qnot** 3,51 [l/s]

Dachfläche 11	Dach E01	
1. Berechnungsformeln		
Regenwasserabfluss	$\mathbf{Q}_{\mathbf{r}} = \mathbf{A}^{*}\mathbf{C}^{*}\mathbf{r}_{(\mathbf{D},\mathbf{T})}$	10000
Regenwasserabfluss über Notentwässerung	QNot = (r(5,100) - r(D,T)	x C) x A/10000
2. Auslegungsdaten		
Dach- / Freifläche A Abflussbeiwert C Regenspende r(5,5) Regenspende r(5,100) besonders schützenwertes Gebäude?		140 [m²] 0,5 300 [l/(s*ha)] 556,7 [l/(s*ha)] Ja
3. Ermittlung des Regenwasserabfluss	ses	
Regenwasserabfluss Dachfläche Qr		2,10 [l/s]
Mindestabflussvermögen Notentwässerung Qnot	t	7,79 [l/s]

Dachfläche 12	Lichthof E01	
1. Berechnungsformeln		
Regenwasserabfluss	$\mathbf{Q}_{r} = \mathbf{A}^{\star} \mathbf{C}^{\star} \mathbf{r}_{(D,T)} / \mathbf{C}^{\star}$	10000
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T)$	x C) x A/10000
2. Auslegungsdaten		
Dach- / Freifläche A Abflussbeiwert C Regenspende r(5,5) Regenspende r(5,100) besonders schützenwertes Gebäude?		110 [m²] 0,5 300 [l/(s*ha)] 556,7 Ja
3. Ermittlung des Regenwasserabfluss	ses	
Regenwasserabfluss Dachfläche Qr		1,65 [l/s]
Mindestabflussvermögen Notentwässerung Qnot		6,12 [l/s]

Dachfläche 13	Lichthof E01	
1. Berechnungsformeln		
Regenwasserabfluss	$\mathbf{Q_r} = \mathbf{A}^* \mathbf{C}^* \mathbf{r}_{(D,T)} / \mathbf{C}^* \mathbf{r}_$	10000
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T)$	x C) x A/10000
2. Auslegungsdaten		
Dach- / Freifläche A Abflussbeiwert C Regenspende r(5,5) Regenspende r(5,100) besonders schützenwertes Gebäude?		140 [m²] 0,5 300 [l/(s*ha)] 556,7 [l/(s*ha)] Ja
3. Ermittlung des Regenwasserabfluss	ses	
Regenwasserabfluss Dachfläche Qr		2,10 [l/s]
Mindestabflussvermögen Notentwässerung Qnot		7,79 [l/s]

Dachfläche 14 Lich	Lichtschächte E00							
1. Berechnungsformeln								
Regenwasserabfluss	$Q_r = A^*C^*r_{(D,T)}/10000$							
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T) \times C) \times A/10000$							
2. Auslegungsdaten								
Dach- / Freifläche A	157,3 [m²]							
Abflussbeiwert C	1							
Regenspende r(5,5)	300 [l/(s*ha)]							
3. Ermittlung des Regenwasserabflusses								
Regenwasserabfluss Dachfläche Qr	4,72 [l/s]							

Dachfläche 15	Eingang zu E01
1. Berechnungsformeln	
Regenwasserabfluss	$Q_r = A^*C^*r_{(D,T)}/10000$
Regenwasserabfluss über Notentwässerung	QNot = $(r(5,100) - r(D,T) \times C) \times A/10000$
2. Auslegungsdaten	
Dach- / Freifläche A Abflussbeiwert C Regenspende r(5,5)	120 [m²] 1 300 [l/(s*ha)]
3. Ermittlung des Regenwasserabfluss	es
Regenwasserabfluss Dachfläche Qr	3,60 [l/s]

Projektnummer: 0004211920100999 Projektbezeichnung: NMK-Gelenkbau

PGMM Hilfsmittel LP02 KG410 Version: 3.0

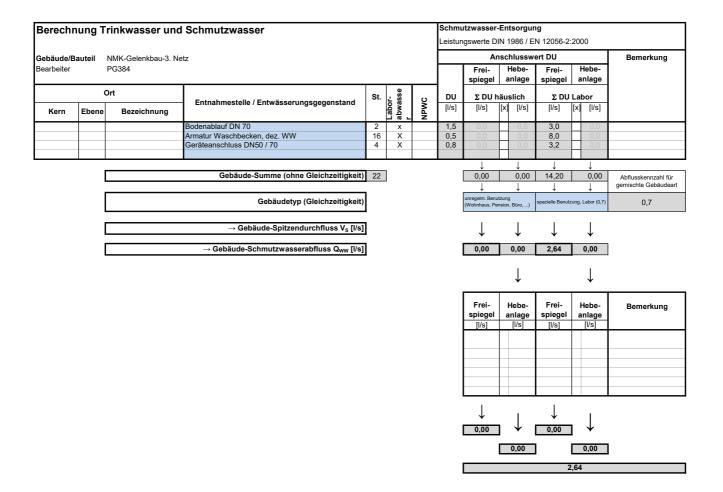
10.06.2025

Zusammenfassung

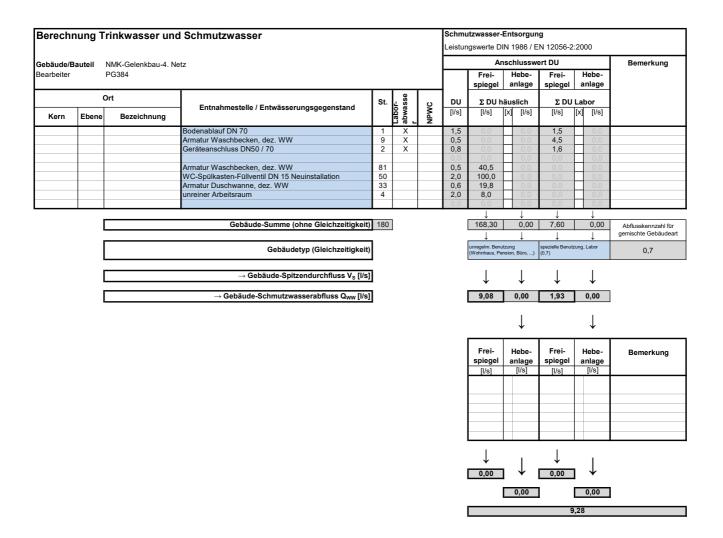
Berechnung Regenwasserabfluss

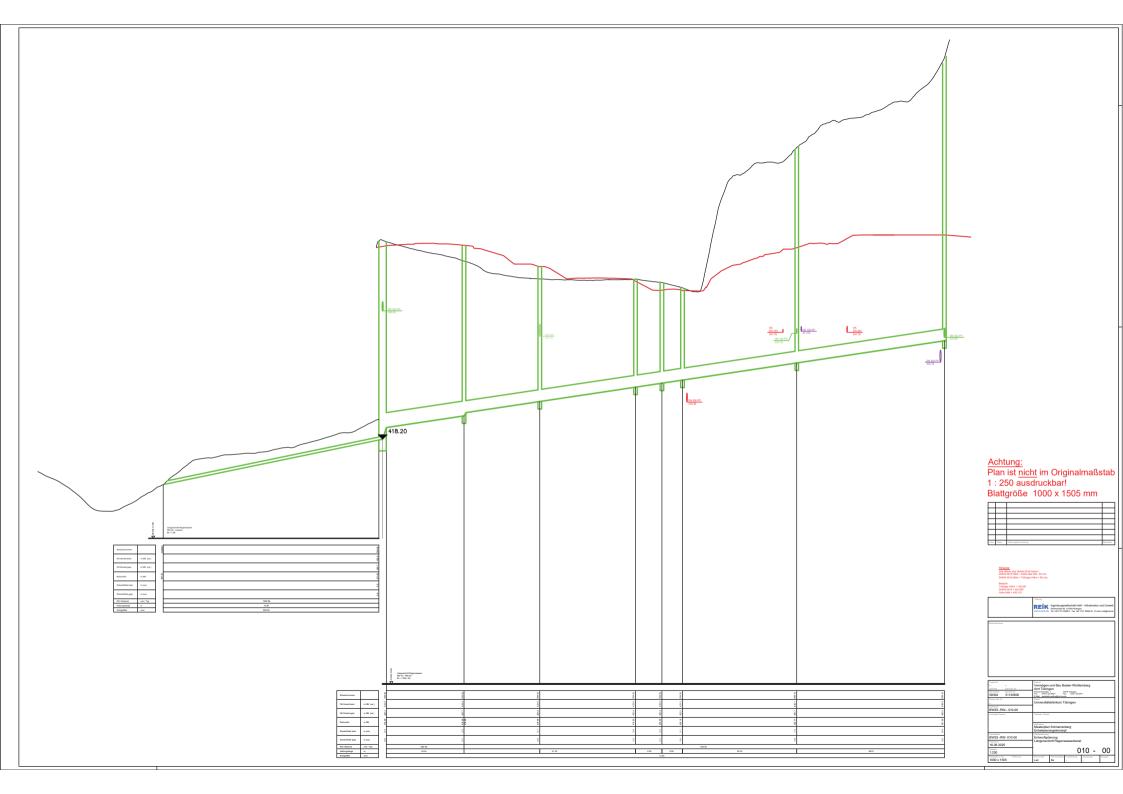
Regenwasserabfluss Gesamt 180,79 [l/s]

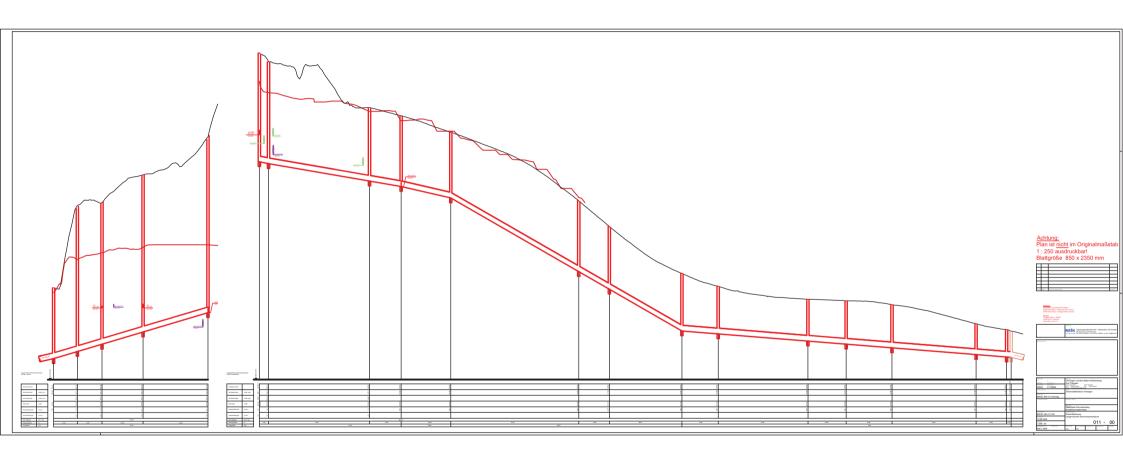
Regenwasserabfluss mit Notentwässerung Gesamt 540,56 [l/s]

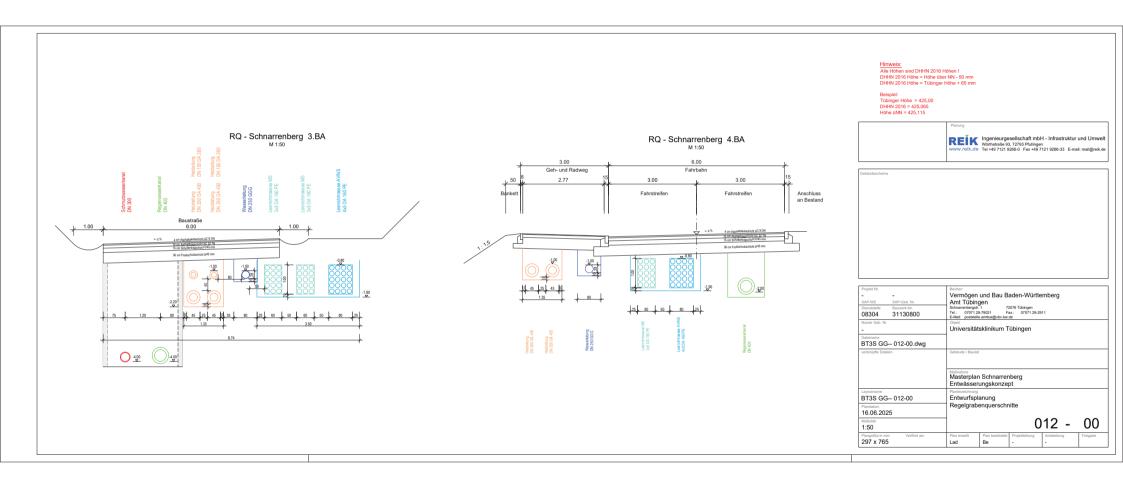


Berechr	chnung Trinkwasser und Schmutzwasser						1	chmutzwasser-Entsorgung					
							Leistun	eistungswerte DIN 1986 / EN 12056-2:2000					
Gebäude/Bauteil NMK-Gelenkbau-1. Netz								Α	nscl	hlusswe	ert DU		Bemerkung
earbeiter	F	PG384								lebe- nlage	Frei- spiegel	Hebe- anlage	
Ort Kern Ebene Bezeichnung		rt Bezeichnung	Entnahmestelle / Entwässerungsgegenstand	St. St.	Labor- abwasse r	NPWC	DU [l/s]	Σ DU häuslich			Σ DU Labor		
Kern	Ebelle	Bezeichnung		_	a e r	ž			Ш				
			Armatur Waschbecken, dez. WW	35	X		0,5	0,0	Н	0,0	17,5	0,0	
			Geräteanschluss DN50 / 70	10	X		0,8	0,0	Н	0,0	8,0	0,0	
			Bodenablauf DN 70	2	Х		1,5	0,0	Н	0,0	3,0	0,0	
							0,0	0,0	Н	0,0	0,0	0,0	
			WC-Spülkasten-Füllventil DN 15 Neuinstallation	83			2,0	166,0	Н	0,0	0,0	0,0	
			Armatur Waschbecken, dez. WW	142			0,5	71,0	Ш	0,0	0,0	0,0	
	\perp		Bodenablauf DN 100	7			2,0	0,0	X	14,0	0,0	0,0	
	\perp		unreiner Arbeitsraum	5			2,0	10,0	Ш	0,0	0,0	0,0	
	\perp		Armatur Duschwanne, dez. WW	50			0,6	30,0	Ш	0,0	0,0	0,0	
	\perp		Geräteanschluss DN100	6			2,0	12,0	ш	0,0	0,0	0,0	
			Klinik Ausguss DN20 / DN20 / DN70 (DN100)	1			0,8	0,8	Ш	0,0	0,0	0,0	
			Bodenablauf DN 70	3			1,5	4,5	Ш	0,0	0,0	0,0	
							0,0	0,0		0,0	0,0	0,0	
	_			_	_			↓		\downarrow	↓	↓	
			Gebäude-Summe (ohne Gleichzeitigkeit	344				294,30		14,00	28,50	0,00	Abflusskennzahl fü
								$\overline{}$		1	1		gemischte Gebäude
	Г		O-1-2	J				unregelm. Ben	utzuno	1	spezielle Benut	zung, Labor	
	- 1		Gebäudetyp (Gleichzeitigkeit	7				(Wohnhaus, P	ension	, Büro,)	(0,7)	5,	0,7
	_			-									
	Г		→ Gebäude-Spitzendurchfluss V _s [l/s	1									
	-		•	_				*		*	*	.	
			→ Gebäude-Schmutzwasserabfluss Q _{ww} [l/s	1				12,01		2,62	3,74	0,00	
										\downarrow		\downarrow	
								Frei- spiegel		lebe- nlage	Frei- spiegel	Hebe- anlage	Bemerkung
								[l/s]		[l/s]	[l/s]	[l/s]	
										0,56			
										0,00			
								0,00	1	\downarrow	0,00	1 ↓	
										3,18		0,00	
											1	5,76	
												0,70	









Berechnung Trinkwasser und Schmutzwasser						1	Schmutzwasser-Entsorgung Leistungswerte DIN 1986 / EN 12056-2:2000					
						Leistur	ngswerte D	IN 1986 / E	=N 12056-2	:2000		
Gebäude/Bauteil NMK-Gelenkbau-5. Netz						Ar	schlussw	ert DU		Bemerkung		
earbeiter	P	G384					Frei- Hebe- spiegel anlage		Frei- spiegel	Hebe- anlage		
Ort Kern Ebene Bezeichnung		rt Bezeichnung	Entnahmestelle / Entwässerungsgegenstand	St. Labor-	abwasse r NPWC	DU [l/s]	Σ DU h	äuslich	Σ DU Labor [l/s] [x] [l/s]		-	
		20201011114119	A 1 D 1 1 1000	ت ت	효니고		54.0	0.0	0.0	0.0		
			Armatur Duschwanne, dez. WW WC-Spülkasten-Füllventil DN 15 Neuinstallation	85 159		0,6 2,0	51,0 318,0	0,0	0,0	0,0		
			Armatur Waschbecken, dez. WW	272		0,5	136,0	0,0	0,0	0.0		
			unreiner Arbeitsraum	8		2,0	16,0	0.0	0,0	0.0		
			Bodenablauf DN 70	2		1,5	3,0	0.0	0,0	0,0		
			Bodenablauf DN 100	20		2,0	0.0	X 40,0	0,0	0.0		
			Geräteanschluss DN100	1		2,0	0,0	X 2,0	0,0	0,0		
			Geräteanschluss DN50 / 70	1		0,8	0.0	X 0,8	0,0	0.0		
			Armatur Ausgussbecken, nur KW	3		0,8	0.0	X 2,4	0,0	0.0		
			Armatur Waschbecken, nur KW	10		0,5	5,0	0,0	0,0	0,0		
			Urinal-Druckspüler DN 15 (elektrisch oder manuell)	10		0,8	8,0	0,0	0,0	0,0		
			1			0,0	0,0	0,0	0,0	0,0		
						0,0	0,0	0,0	0,0	0,0		
	Ī	Gebäudetyp (Gleichzeitigkeit) Gebäudetyp (Gleichzeitigkeit) Unregelm. Benutzung spezielle Benutzung, Labor (V/chnhaus, Pension, Büro,) (0,7)						zung, Labor	gemischte Gebäude			
			→ Gebäude-Spitzendurchfluss V _S [l/s	_]			1	1	1	1		
			→ Gebäude-Schmutzwasserabfluss Q _{ww} [l/s]			16,22	4,71	0,00	0,00		
								\downarrow		\downarrow		
							Frei- spiegel	Hebe- anlage	Frei- spiegel	Hebe- anlage	Bemerkung	
							[l/s]	[l/s]	[l/s]	[l/s]		
								0,87				
							0,00	. ↓	0,00	. ↓		
							0,00	5,58]	0,00		
									2	1.80		

